The Impact of Elevated Atmospheric [CO2] on Soil C and N Dynamics: A Meta-Analysis

  • K. -J. van Groenigen
  • M. -A. de Graaff
  • J. Six
  • D. Harris
  • P. Kuikman
  • C. van Kessel
Part of the Ecological Studies book series (ECOLSTUD, volume 187)


Microbial Biomass Microbial Respiration Calcareous Grassland Global Change Biol Global Change Biology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams DC, Gurevitch J, Rosenberg MS (1997) Resampling tests for meta-analysis of ecological data. Ecology 78:1277–1283CrossRefGoogle Scholar
  2. Ainsworth EA, Davey PA, Bernacchi CJ, Dermody OC, Heaton EA, Moore DJ, Morgan PB, Naidu SL, Yoo RA HS, Zhu XG, Curtis PS, Long SP (2002) A meta-analysis of elevated CO2 effects on soybean (Glycine max) physiology, growth and yield. Global Change Biol 8:695–709CrossRefGoogle Scholar
  3. Ainsworth EA, Long SP (2005) What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol 165:351–372PubMedCrossRefGoogle Scholar
  4. Anderson JPE, Domsch KH (1978) A physiological method for the quantitative measurement of microbial biomass in soil. Soil Biol Biochem 10:215–221CrossRefGoogle Scholar
  5. Bazzaz FA, Fajer ED (1990) Plant life in a CO2-rich world. Sci Am 266:68–74CrossRefGoogle Scholar
  6. Billings SA, Schaeffer SM, Evans RD (2002) Trace N gas losses and N mineralization in Mojave desert soils exposed to elevated CO2. Soil Biol Biochem 34:1777–1784CrossRefGoogle Scholar
  7. Curtis PS, Wang XZ (1998) A meta-analysis of elevated CO2 effects on woody plant mass, form and physiology. Oecologia 113:299–313CrossRefGoogle Scholar
  8. De Graaff MA, Van Groenigen KJ, Six J, Hungate BA, Van Kessel C (2006) Interactions between plant growth and soil nutrient cycling under elevated CO2: a meta-analysis. Global Change Biol (in press)Google Scholar
  9. Diaz S, Grime JP, Harris J, McPherson E (1993) Evidence of a feedback mechanismlimiting plant response to elevated carbon dioxide. Nature 363:616–617CrossRefGoogle Scholar
  10. Ebersberger D, Niklaus PA, Kandeler E (2003) Long term CO2 enrichment stimulates Nmineralisation sand enzyme activities in calcareous grassland. Soil Biol Biochem 35:965–972CrossRefGoogle Scholar
  11. Gifford RM (1994) The global carbon cycle: a viewpoint on the missing sink. Aust J Plant Physiol 21:1–15CrossRefGoogle Scholar
  12. Hagedorn F, Bucher JB, Tarjan D, Rusert P, Bucher-Waillin I (2000) Responses of N fluxes and pools to elevated atmospheric CO2 in model forest ecosystems with acidic and calcareous soils. Plant Soil 224:273–286CrossRefGoogle Scholar
  13. Hagedorn F, Maurer S, Egli P, Blaser P, Bucher JB, Siegwolf R (2001) Carbon sequestration in forest soils: effect of soil type, atmospheric CO2 enrichment, and N deposition. Eur J Soil Sci 52:619–628CrossRefGoogle Scholar
  14. Hagedorn F, Blaser P, Siegwolf F (2002) Elevated atmospheric CO2 and increased N deposition effects on dissolved organic carbon-clues from δ13C signature. Soil Biol Biochem 34:355–366CrossRefGoogle Scholar
  15. Hedges LV, Olkin I (1985) Statistical methods for meta-analysis. Academic, New YorkGoogle Scholar
  16. Hendrey GR (1993) Free-air carbon dioxide enrichment for plant research in the field. Smoley, Boca Raton, Fla.Google Scholar
  17. Hoosbeek MR, Lukac M, Van Dam D, Godbold DL, Velthorst EJ, Biondi FA, Peressotti A, Cotrufo MF, Angelis P de, Scarascsia-Mugnozza G (2004) More new carbon in the mineral soil of a poplar plantation under free air carbon enrichment (PopFACE): cause of increased priming effect? Global Biogeochem Cycles 18:GB1040CrossRefGoogle Scholar
  18. Hu S, Chapin FS, Firestone MK, Field CB, Chiariello NR (2001) Nitrogen limitation of microbial decomposition in a grassland under elevated CO2. Nature 409:188–191PubMedCrossRefGoogle Scholar
  19. Hungate BA, Jackson, RB, Field CB, Chapin FS III (1996) Detecting changes in soil carbon in CO2 enrichment experiments. Plant Soil 187:15–145Google Scholar
  20. Hungate BA, Holland EA, Jackson RB, Chapin FS III, Mooney HA, Field CB (1997a) The fate of carbon in grasslands under carbon dioxide enrichment. Nature 388:576–579CrossRefGoogle Scholar
  21. Hungate BA, Lund CP, Pearson HL, Chapin FS III (1997b) elevated CO2 and nutrient addition alter soil N cycling and N trace gas fluxes with early weason wet-up in a California annual grassland. Biogeochemistry 37:89–109CrossRefGoogle Scholar
  22. Hungate BA, Dijkstra P, Johnson DW, Hinkle CR, Drake BG (1999) Elevated CO2 increase N2 fixation and decreases soil nitrogen mineralization in Florida scrub oak. Global Change Biol 5:781–789CrossRefGoogle Scholar
  23. Hungate BA, Dukes JS, Shaw R, Luo Y, Field CB (2004a) Nitrogen and climate change. Science 302:1512–1513CrossRefGoogle Scholar
  24. Hungate BA, Stiling PD, Dijkstra P, Johnson DW, Ketterer ME, Hymus GJ, Hinkle CR, Drake BG (2004b) CO2 elicits long-term decline in nitrogen fixation. Science 304:1291–1291PubMedCrossRefGoogle Scholar
  25. Jastrow JD, Miller RM, Matamala R, Norby RJ, Boutton TW, Rice CW, Owensby CE (2005) Elevated atmospheric carbon dioxide increases soil carbon. Global Change Biol 11:2057–2064CrossRefGoogle Scholar
  26. Johnson DW, Cheng W, Joslin JD, Norby RJ, Edwards NT, Todd DE (2004) Effects of elevated CO2 on nutrient cycling in a sweetgum plantation. Biogeochemistry 69:379–403CrossRefGoogle Scholar
  27. Jones MB, Donnelly A (2004) Carbon sequestration in temperate grassland ecosystems and the influence of management, climate and elevated CO2. New Phytol 164:423–439CrossRefGoogle Scholar
  28. Körner C, Asshoff R, Bignucolo O, Hattenschwiler S, Keel SG, Pelaez-Riedl S, Pepin S, Siegwolf RTW, Zotz G (2005) Carbon flux and growth in mature deciduous forest trees exposed to elevated CO2. Science 309:1360–1362PubMedCrossRefGoogle Scholar
  29. Luo Y, Su B, Currie WS, Dukes JS, Finzi A, Hartwig U, Hungate B, McMurtrie RE, Oren R, Parton WJ, Pataki DE, Shaw MR, Zak DR, Field CB (2004) Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. BioScience 54:731–739CrossRefGoogle Scholar
  30. Mack MC, Schuur EAG, Bret-Harte MS, Shaver GR, Chapin III FS (2004) Ecosystem carbon storage in arctic tundra reduced by long-term nutrient fertilization. Nature 431:440–443PubMedCrossRefGoogle Scholar
  31. Mikan CJ, Zak DR, Kubiske ME, Pregitzer KS (2000) Combined effects of atmospheric CO2 and N availability on the belowground carbon and nitrogen dynamics of aspen mesocosms. Oecologia 124:432–445CrossRefGoogle Scholar
  32. Mosier AR, Pendall E, Morgan JA (2003) Effect of water addition and nitrogen fertilization on the fluxes of CH4, CO2, NOx, and N2O following five years of elevated CO2 in the Colorado shortgrass steppe. Atmos Chem Phys 3:1703–1708CrossRefGoogle Scholar
  33. Neff JC, Townsend AR, Gleixner G, Lehman SJ, Turnbull J, Bowman WD (2002) Variable effects of nitrogen additions on the stability and turnover of soil carbon. Nature 419:915–917PubMedCrossRefGoogle Scholar
  34. Niklaus PA, Körner C (1996) Responses of soil microbiota of a late successional alpine grassland to long term CO2 enrichment. Plant Soil 184:219–229CrossRefGoogle Scholar
  35. Niklaus PA, Körner C (2004) Synthesis of a six-year study of calcareous grassland responses to in situ CO2 enrichment. Ecol Monogr 74:491–511Google Scholar
  36. Niklaus PA, Leadly PW, Stocklin J, Körner C (1998) Nutrient relations in calcareous grassland under elevated CO2. Oecologia 116:67–75CrossRefGoogle Scholar
  37. Norby RJ, Cotrufo MF, Ineson P, O’Neill EG, Canadell JG (2001) Elevated CO2, litter chemistry, and decomposition: a synthesis. Oecologia 127:153–165CrossRefGoogle Scholar
  38. Oren R, Ellisworth DS, Johnson KH, Phillips N, Ewers BE, Maier C, Schafer KVR, McCarthy H, Hendrey G, McNulty SG, Katul GG (2001) Soil fertility limits carbon sequestration by forest ecosystems in a CO2 enriched atmosphere. Nature 411:466–469CrossRefGoogle Scholar
  39. Parsons WFJ, Lindroth RL, Bockheim JG (2004) Decomposition of Betula papyrifera leaf litter under the independent and interactive effects of elevated CO2 and O3. Global Change Biol 10:1666–1677CrossRefGoogle Scholar
  40. Paterson E, Rattray EAS, Killham K (1996) Effect of elevated atmospheric CO2 concentration on C-partitioning and rhizosphere C-flow for three plant species. Soil Biol Biochem 28:195–201CrossRefGoogle Scholar
  41. Paustian K, Six J, Elliott ET, Hunt HW (2000) Management options for reducing CO2 emissions from agricultural soils. Biogeochemistry 48:147–163CrossRefGoogle Scholar
  42. Pendall E, Del Grosso S, King JY, LeCain DR, Milchunas DG, Morgan JA, Mosier AR, Ojima DS, Parton WA, Tans PP, White JWC (2003) Elevated atmospheric CO2 effects and soil water feedbacks on soil respiration components in a Colorado grassland. Global Biogeochem Cycles 17:GB1046CrossRefGoogle Scholar
  43. Pendall E, Mosier AR, Morgan JA (2004) Rhizodeposition stimulated by elevated CO2 in a semiarid grassland. New Phytol 162:447–458CrossRefGoogle Scholar
  44. Pepin S, Körner C (2002) Web-FACE: a new canopy free-air CO2 enrichment system for tall trees in mature forests. Oecologia 133:1–9CrossRefGoogle Scholar
  45. Prior SA, Torbert HA, Runion GB, Rogers HH, Wood CW, Kimball BA, LaMorte RL, Pinter PJ, Wall GW (1997) Free-air carbon dioxide enrichment of wheat: soil carbon and nitrogen dynamics. J Environ Qual 26:1161–1166CrossRefGoogle Scholar
  46. Prior SA, Runion GB, Torbert HA, Rogers HH (2004) Elevated atmospheric CO2 in agroecosystems: soil physical properties. Soil Sci 169:434–439CrossRefGoogle Scholar
  47. Prior SA, Runion GB, Rogers HH, Torbert HA, Reeves DW (2005) Elevated atmospheric CO2 effects on biomass production and soil carbon in conventional and conservation cropping systems. Global Change Biol 11:657–665CrossRefGoogle Scholar
  48. Reich PB, Knops J, Tillman D, Craine J, Ellsworth D, Tjoelker M, Lee T, Wedink D, Naeem S, Bahauddin D, Hendrey G, Jose S, Wrage K, Goth J, Bengston W (2001) Plant diversity enhances ecosystem responses to elevated CO2 and nitrogen deposition. Nature 410:809–812PubMedCrossRefGoogle Scholar
  49. Rice CW, Garcia FO, Hampton CO, Owensby CE (1994) Soil microbial response in tallgrass prairie to elevated CO2. Plant Soil 165:67–74CrossRefGoogle Scholar
  50. Rillig MC, Wright SF, Allen MF, Field CB (1999) Rise in carbon dioxide changes soil structure. Nature 400:628–628CrossRefGoogle Scholar
  51. Rillig MC, Hernandez GY, Newton PCD (2000) Arbuscular mycorrhizae respond to elevated atmospheric CO2 after long-term exposure: evidence from a CO2 spring in New Zealand supports the resource balance model. Ecol Lett 3:475–478CrossRefGoogle Scholar
  52. Rogers HH, Heck WW, Heagle AS (1983) A field technique for the study of plantresponses to elevated carbon-dioxide concentrations. J Air Pollut Control Assoc 33:42–44Google Scholar
  53. Rosenberg MS, Adams DC, Gurevitch J (2000) MetaWin, statistical software for metaanalysis, ver 2. Sinauer Associates, Sunderland, Mass.Google Scholar
  54. Ross DJ, Newton PCD, Tate KR (2004) Elevated [CO2] effects on herbage production and soil carbon and nitrogen pools and mineralization in a species-rich, grazed pasture on a seasonally dry sand. Plant Soil 260:183–196CrossRefGoogle Scholar
  55. Schlesinger WH (1997) Biogeochemistry: an analysis of global change, 2nd edn. Academic, San Diego, Calif.Google Scholar
  56. Schlesinger WH, Lichter J (2001) Limited carbon storage in soil and litter of experimental forest plots under increased atmospheric CO2. Nature 411:466–469PubMedCrossRefGoogle Scholar
  57. Six J, Carpentier A, Kessel C van, Merckx R, Harris D, Horwath WR, Luscher A (2001) Impact of elevated CO2 on soil organic matter dynamics as related to changes in aggregate turnover and residue quality. Plant Soil 234:27–36CrossRefGoogle Scholar
  58. Six J, Conant RT, Paul EA, Paustian K (2002) Stabilization mechanisms of soil organic matter: implications for C-saturation of soils. Plant Soil 241:155–176CrossRefGoogle Scholar
  59. Thornley JHM, Cannell MGR (2000) Dynamics of mineral N availability in grassland ecosystems under increased [CO2]: hypotheses evaluated using the Hurley pasture model. Plant Soil 224:153–170CrossRefGoogle Scholar
  60. Vance ED, Brookes PC, Jenkinson DS (1987) An extraction method for measuring soil microbial biomass-C. Soil Biol Biochem 19:703–707CrossRefGoogle Scholar
  61. Van Kessel C, Boots B, de Graaff MA Harris D, Blum H, Six J (2006) Soil C and N sequestration in a grassland following 10 years of free air CO2 enrichment. Global Change Biol (in press)Google Scholar
  62. Williams MA, Rice CW, Owensby CE (2000) Carbon dynamics and microbial activity in tallgrass prairie exposed to elevated CO2 for 8 years. Plant Soil 227:127–137CrossRefGoogle Scholar
  63. Williams MA, Rice CW, Owensby CE (2001) Nitrogen competition in a tallgrass prairie ecosystem exposed to elevated carbon dioxide. Soil Sci Soc Am J 65:340–346CrossRefGoogle Scholar
  64. Wood CW, Torbert HA, Rogers HH, Runion GB, Prior SA (1994) Free-air CO2 enrichment effects on soil carbon and nitrogen. Agric For Meteorol 70:103–116CrossRefGoogle Scholar
  65. Zak DR, Pregitzer KS, Curtis PS, Teeri JA, Forgel R, Randlett DL (1993) Elevated atmospheric CO2 and feedback between carbon and nitrogen cycles. Plant Soil 151:105–117CrossRefGoogle Scholar
  66. Zak DR, Pregitzer KS, King JS, Holmes WE (2000) Elevated atmospheric CO2, fine roots, and the response of soil micro organisms: a review and hypothesis. New Phytol 147:201–222CrossRefGoogle Scholar
  67. Zanetti S, Hartwig UA, Luscher A, Hebeisen T, Frehner M, Fisher BU, Hendrey GR, Blum H, Nosberger J (1996) Stimulation of symbiotic N2 fixation in Trifolium repens L under elevated atmospheric pCO2 in a grassland ecosystem. Plant Physiol 112:575–583PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • K. -J. van Groenigen
    • 1
  • M. -A. de Graaff
    • 2
  • J. Six
    • 2
  • D. Harris
    • 3
  • P. Kuikman
    • 4
  • C. van Kessel
    • 1
  1. 1.Laboratory for Soil Science and GeologyWageningen UniversityWageningenthe Netherlands
  2. 2.Department of Plant SciencesUniversity of California-DavisDavisUSA
  3. 3.Stable Isotope FacilityUniversity of California-DavisDavisUSA
  4. 4.Alterra, Soil Sciences CenterWageningenThe Netherlands

Personalised recommendations