Impacts of Elevated Atmospheric [CO2] and [O3] on Northern Temperate Forest Ecosystems: Results from the Aspen FACE Experiment

  • D. F. Karnosky
  • K. S. Pregitzer
Part of the Ecological Studies book series (ECOLSTUD, volume 187)


Leaf Area Index Fine Root Biomass Sugar Maple Populus Tremuloides Global Change Biol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Beedlow PA, Tingey DT, Phillips DL, Hogsett WE, Olszyk DM (2004) Rising atmospheric CO2 and carbon sequestration in forests. Front Ecol Environ 2:315–322Google Scholar
  2. Coleman MD, Dickson RE, Isebrands JG, Karnosky DF (1996) Root growth and physiology of potted and field-grown trembling aspen exposed to tropospheric ozone. Tree Physiol 16:145–152PubMedGoogle Scholar
  3. Davey PA, Hunt S, Hymus GJ, DeLucia EH, Drake BG, Karnosky DF, Long SP (2004) Respiratory oxygen uptake is not decreased by an instantaneous elevation of [CO2], but is increased with long-term growth in the field at elevated [CO2]. Plant Physiol 134:520–527PubMedCrossRefGoogle Scholar
  4. Dickson RE, Lewin KF, Isebrands JG, Coleman MD, Heilman WE, Riemenschneider DE, Sober J, Host GE, Hendrey GR, Pregitzer KS, Karnosky DF (2000) Forest atmosphere carbon transfer storage-II (FACTS II) — the aspen free-air CO2 and O3 enrichment (FACE) project in an overview. General Technical Report NC-214. USDA Forest Service North Central Experiment Station, St Paul, Minn., 68 ppGoogle Scholar
  5. Ellsworth DS, Reich PB, Naumburg ES, Koch GW, Kubiske ME, Smith SD (2004) Photosynthesis, carboxylation and leaf nitrogen responses of 16 species to elevated pCO2 across four free-air CO2 enrichment experiments in forest, grassland and desert. Global Change Biol 10:2121–2138CrossRefGoogle Scholar
  6. Felzer B, Kicklighter D, Melillo J, Wang C, Zhuang Q, Prinn R (2004) Effects of ozone on net primary production and carbon sequestration in the conterminous United States using a biogeochemistry model. Tellus 56B:230–248Google Scholar
  7. Fowler D, Cape JN, Coyle M, Flechard C, Kuylenstierna J, Hicks K, Derwent D, Johnson C, Stevenson D (1999) The global exposure of forests to air pollutants. J Water Air Soil Pollut 116:5–32CrossRefGoogle Scholar
  8. Gower ST (2003) Patterns and mechanisms of the forest carbon cycle. Annu Rev Environ Resour 28:169–204CrossRefGoogle Scholar
  9. Grennfelt P (2004) New directions: recent research findings may change ozone control policies. Atmos Environ 38:2215–2216CrossRefGoogle Scholar
  10. Hendrey GR, Ellsworth DS, Lewis FK, Nagy J (1999) A free-air enrichment system for exposing tall forest vegetation to elevated atmospheric CO2. Global Change Biol 5:293–309CrossRefGoogle Scholar
  11. Holmes WE, Zak DR, Pregitzer KS, King JS (2003) Soil nitrogen trans-formations under Populus tremuloides, Betula papyrifera and Acer saccharum following 3 years exposure to elevated CO2 and O3. Global Change Biol 9:1743–1750CrossRefGoogle Scholar
  12. Holton MK, Lindroth RL, Nordheim EV (2003) Foliar quality influences tree-herbivore-parasitoid interactions: effects of elevated CO2, O3, and genotype. Oecologia 137:233–244PubMedCrossRefGoogle Scholar
  13. IPCC (2001) A report of working group I of the intergovernmental panel on climate change. Scholar
  14. Isebrands JG, McDonald EP, Kruger E, Hendrey G, Pregitzer K, Percy K, Sober J, Karnosky DF (2001) Growth responses of Populus tremuloides clones to interacting carbon dioxide and tropospheric ozone. Environ Pollut 115:359–371CrossRefGoogle Scholar
  15. Kaakinen S, Kostiainen K, Ek F, Saranpää P, Kubiske ME, Sober J, Karnosky DF, Vapaavuori E (2004) Stem wood properties of Populus tremuloides, Betula papyrifera and Acer saccharum saplings after three years of treatments to elevated carbon dioxide and ozone. Global Change Biol 10:1513–1525CrossRefGoogle Scholar
  16. Karnosky DF (2005) Ozone effects on forest ecosystems under a changing global environment. J Agric Meteorol 60:353–358Google Scholar
  17. Karnosky DF, Mankovska B, Percy K, Dickson RE, Podila GK, Sober J, Noormets A, Hendrey G, Coleman MD, Kubiske M, Pregitzer KS, Isebrands JG (1999) Effects of tropospheric O3 and interaction with CO2: results from an O3-gradient and a FACE experiment. J Water Air Soil Pollut 116:311–322CrossRefGoogle Scholar
  18. Karnosky DF, Percy KE, Xiang B, Callan B, Noormets A, Mankovska B, Hopkin A, Sober J, Jones W, Dickson RE, Isebrands JG (2002) Interacting elevated CO2 and tropospheric O3 predisposes aspen (Populus tremuloides Michx.) to infection by rust (Melampsora medusae f.sp. tremuloidae). Global Change Biol 8:329–338CrossRefGoogle Scholar
  19. Karnosky DF, Zak DR, Pregitzer KS, Awmack CS, Bockheim JG, Dickson RE, Hendrey GR, Host GE, King JS, Kopper BJ, Kruger EL, Kubiske ME, Lindroth RL, Mattson WJ, McDonald EP, Noormets A, Oksanen E, Parsons WFJ, Percy KE, Podila GK, Riemenschneider DE, Sharma P, Thakur RC, Sober A, Sober J, Jones WS, Anttonen S, Vapaavuori E, Mankovska B, Heilman WE, Isebrands JG (2003) Tropospheric O3 moderates responses of temperate hardwood forests to elevated CO2: a synthesis of molecular to ecosystem results from the Aspen FACE project. Funct Ecol 17:289–304CrossRefGoogle Scholar
  20. Karnosky DF, Pregitzer KS, Zak DR, Kubiske ME, Hendrey GR, Weinstein D, Nosal M, Percy KE (2005) Scaling ozone responses of forest trees to the ecosystem level in a changing climate. Plant Cell Environ 28:965–981CrossRefGoogle Scholar
  21. King JS, Pregitzer KS, Zak DR, Karnosky DF, Isebrands JG, Dickson RE, Hendrey, GR, Sober J (2001) Fine root biomass and fluxes of soil carbon in young stands of paper birch and trembling aspen as affected by elevated atmospheric CO2 and tropospheric O3. Oecologia 128:237–250CrossRefGoogle Scholar
  22. King JS, Hanson PJ, Bernhardt E, DeAngelis P, Norby RJ, Pregitzer KS (2004) A multi-year synthesis of soil respiration responses to elevated atmospheric CO2 from four forest FACE experiments. Global Change Biol 10:1027–1042CrossRefGoogle Scholar
  23. King JS, Kubiske ME, Pregitzer KS, Hendrey GR, McDonald EP, Giardina CP, Quinn VS, Karnosky DF (2005) Tropospheric O3 compromises net primary production in young stands of trembling aspen, paper birch and sugar maple in response to elevated atmospheric CO2. New Phytol 168:623–636PubMedCrossRefGoogle Scholar
  24. Kopper BJ, Lindroth RL (2003a) Responses of trembling aspen (Populus tremuloides) phytochemistry and aspen blotch leafminer (Phyllonorycter tremuloidiella) performance to elevated levels of atmospheric CO2 and O3. Agric For Entomol 5:17–26CrossRefGoogle Scholar
  25. Kopper BJ, Lindroth RL (2003b) Effects of elevated carbon dioxide and ozone on the phytochemistry of aspen and performance of an herbivore. Oecologia 134:95–103PubMedCrossRefGoogle Scholar
  26. Kopper BJ, Lindroth RL, Nordheim EV (2001) CO2 and O3 effects on paper birch (Betulaceae: Betula papyrifera) phytochemistry and whitemarked tussock moth (Lymantriidae: Orgyia leucostigma) performance. Environ Entomol 30:1119–1126CrossRefGoogle Scholar
  27. Larson JL, Zak DR, Sinsabaugh RL (2002) Microbial activity beneath temperate trees growing under elevated CO2 and O3. Soil Sci Soc Amer J 66:1848–1856CrossRefGoogle Scholar
  28. Lindroth RL, Kopper BJ, Parsons WFJ, Bockheim JG, Sober J, Hendrey GR, Pregitzer KS, Isebrands JG, Karnosky DF (2001) Effects of elevated carbon dioxide and ozone on foliar chemical composition and dynamics in trembling aspen (Populus tremuloides) and paper birch (Betula papyrifera). Environ Pollut 115:395–404PubMedCrossRefGoogle Scholar
  29. Lindroth RL, Wood SA, Kopper BJ (2002) Response of quaking aspen genotypes to enriched CO2: foliar chemistry and insect performance. Agric For Entomol 4:315–323CrossRefGoogle Scholar
  30. Long SP, Ainsworth EA, Rogers A, Ort DR (2004) Rising atmospheric carbon dioxide: plants FACE the future. Annu Rev Plant Biol 55:591–628PubMedCrossRefGoogle Scholar
  31. Loranger GI, Pregitzer KS, King JS (2004) Elevated CO2 and O3 concentrations differentially affect selected groups of the fauna in temperate forest soils. Soil Biol Biochem 36:521–1524CrossRefGoogle Scholar
  32. Loya WM, Pregitzer KS, Karberg NJ, King JS, Giardina CP (2003) Reduction of soil carbon formation by tropospheric ozone under elevated carbon dioxide. Nature 425:705–707PubMedCrossRefGoogle Scholar
  33. Mankovska B, Percy K, Karnosky DF (1998) Impact of ambient tropospheric O3, CO2, and particulates on the epicuticular waxes of aspen clones differing in O3 tolerance. Ekologia (Bratislava) 18:200–210Google Scholar
  34. Mankovska B, Percy K, Karnosky DF (2003) Impact of greenhouse gases on epicuticular waxes of Populus tremuloides Michx.: results from an open-air exposure and a natural O3 gradient. Ekologia (Bratislava) 22:182–194Google Scholar
  35. Mankovska B., Percy E, Karnosky DF (2005) Impacts of greenhouse gases on epicuticular waxes of Populus tremuloides Michx.: results from an open-air exposure and a natural O3 gradient. Environ Pollut 137:580–586PubMedCrossRefGoogle Scholar
  36. Mattson WJ, Kuokkanen K, Niemelä P, Julkunen-Tiitto R, Kellomäki S, Tahvanainen J (2004) Elevated CO2 alters birch resistance to Lagomorpha herbivores. Global Change Biol 10:1402–1413CrossRefGoogle Scholar
  37. McDonald EP, Kruger EL, Riemenschneider DE, Isebrands JG (2002) Competitive status influences tree-growth responses to elevated CO2 and O3 in aggrading aspen stands. Funct Ecol 16:792–801CrossRefGoogle Scholar
  38. Mondor EB, Tremblay MN, Awmack CS, Lindroth RL (2004a) Divergent pheromonemediated insect behaviour under global atmospheric change. Global Change Biol 10:1820–1824CrossRefGoogle Scholar
  39. Mondor EB, Tremblay MN, Lindroth RL (2004b) Transgenerational phenotypic plasticity under future atmospheric conditions. Ecol Letters 7:941–946CrossRefGoogle Scholar
  40. Noormets A, Sober A, Pell EJ, Dickson RE, Podila GK, Sober J, Isebrands JG, Karnosky DF (2001a) Stomatal and non-stomatal limitation to photosynthesis in two trembling aspen (Populus tremuloides Michx.) clones exposed to elevated CO2 and/or O3. Plant Cell Environ 24:327–336CrossRefGoogle Scholar
  41. Noormets A, McDonald EP, Kruger EL, Sober A, Isebrands JG, Dickson RE, Karnosky DF (2001b) The effect of elevated carbon dioxide and ozone on leaf-and branch-level photosynthesis and potential plant-level carbon gain in aspen. Trees 15:262–270CrossRefGoogle Scholar
  42. Oksanen E, Sober J, Karnosky DF (2001) Interactions of elevated CO2 and ozone in leaf morphology of aspen (Populus tremuloides) and birch (Betula papyrifera) in aspen FACE experiment. Environ Pollut 115:437–446PubMedCrossRefGoogle Scholar
  43. Oksanen E, Häikiö E, Sober J, Karnosky DF (2003) Ozone-induced H2O2 accumulation in field-grown aspen and birch is linked to foliar ultrastructure and peroxisomal activity. New Phytol 161:791–799CrossRefGoogle Scholar
  44. Parsons WFJ, Lindroth RL, Bockheim JG (2004) Decomposition of Betula papyrifera leaf litter under the independent and interactive effects of elevated CO2 and O3. Global Change Biol 10:1666–1677CrossRefGoogle Scholar
  45. Percy KE, Awmack CS, Lindroth RL, Kubiske ME, Kopper BJ, Isebrands JG, Pregitzer KS, Hendrey GR, Dickson RE, Zak DR, Oksanen E, Sober J, Harrington R, Karnosky DF (2002) Altered performance of forest pests under CO2-and O3-enriched atmospheres. Nature 420:403–407PubMedCrossRefGoogle Scholar
  46. Percy KE, Mankovska B, Hopkin A, Callan B, Karnosky DF (2003) Ozone affects leaf surface pest interactions. In: Karnosky DF, Percy KE, Chappelka AH, Simpson C, Pikkarainen JM (eds) Air pollution, global change and forests in the new millennium. Elsevier Press, Amsterdam, pp 247–258Google Scholar
  47. Phillips RL, Zak DR, Holmes WE, White DC (2002) Microbial community composition and function beneath temperate trees exposed to elevated atmospheric carbon dioxide and ozone. Oecologia 131:236–244CrossRefGoogle Scholar
  48. Piva RJ (1996) Pulpwood production in the Lake States, 1995. Research Note NC-370. USDA Forest Service North Central Forest Experiment Station, St Paul, Minn., 5 ppGoogle Scholar
  49. Pregitzer KS, Zak DR, Maziasz J, DeForest J, Curtis PS, Lussenhop J (2000) Interactive effects of atmospheric CO2 and soil-N availability on fine roots of Populus tremuloides. Ecol Appl 10:1833Google Scholar
  50. Sharma P, Sober A, Sober J, Podila GK, Kubiske ME, Mattson WJ, Isebrands JG, Karnosky DF (2003) Moderation of [CO2]-induced gas exchange responses by elevated tropospheric O3 in trembling aspen and sugar maple. Ekologia (Bratislava) 22:304–317Google Scholar
  51. Takeuchi Y, Kubiske ME, Isebrands JG, Pregitzer KS, Hendrey G, Karnosky DF (2001) Photosynthesis, light and nitrogen relationships in a young deciduous forest canopy under open-air CO2 enrichment. Plant Cell Environ 24:1257–1268CrossRefGoogle Scholar
  52. Wustman BA, Oksanen E, Karnosky DF, Sober J, Isebrands JG, Hendrey GR, Pregitzer KS, Podila GK (2001) Effects of elevated CO2 and O3 on aspen clones varying in O3 sensitivity: can CO2 ameliorate the harmful effects of O3? Environ Pollut 115:473–481PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • D. F. Karnosky
    • 1
  • K. S. Pregitzer
    • 2
  1. 1.Michigan Technological UniversityHoughtonUSA
  2. 2.Ecosystem Science Center, School of Forestry and Environmental ScienceMichigan Technological UniversityHoughtonUSA

Personalised recommendations