Skip to main content

Pneumologie

  • Chapter
PET/CT-Atlas
  • 840 Accesses

Auszug

Epidemiologie. Weltweit werden jährlich 1,3 Mio. Neuerkrankungen verzeichnet, die Tendenz ist steigend1. Bei Männern macht das BC 22% aller Karzinome aus, bei Frauen kommt es mit 8% gleich hinter dem Mammakarzinom. Der Anteil des NSCLC (“non-small-cell lung cancer, nichtkleinzelliges Bronchialkarzinom) beträgt 80% an den Bronchialkarzinomen und 18% an allen Karzinomen; das kleinzellige hält einen Anteil von 20–25%. Jährlich sterben 45.000 Menschen am Bronchialkarzinom. Jeder zwanzigste Mann in Deutschland ist betroffen.

Jemal A, Murray T, Ward E (2005) Cancer Statistics 2005. CA Cancer J Clin 55:10–30

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Al-Sugair A, Coleman RE (1998) Applications of PET in Lung Cancer. Semin. Nucl Med 28:303–319

    Article  PubMed  CAS  Google Scholar 

  2. Antoch G, Stattaus J, Nemat AT et al. (2003) Non-small cell lung cancer: Dual modality PET/CT in preoperative staging. Radiology 229:526–533

    Article  PubMed  Google Scholar 

  3. Arslandemir C, Hetzel M, Nuessle K et al. (2004) Skeletal staging of lung cancer: comparison of sensitivity of F-18 fluordesoxyglucose and F-18 sodium fluoride PET. Eur J Nucl Med (Suppl 2) 31:S206

    Google Scholar 

  4. Baldwin SA (1993) Mammalian passive glucose transporters: members of an ubiquitous family of active and passive transport proteins. Bioch Biophys Acta 1154:17–49

    CAS  Google Scholar 

  5. Baum RP, Hellwig D, Mezzetti M (2004) Position of nuclear medicine modalities in the diagnostic workup of cancer patients: lung cancer. Q J Nucl Med Mol Imaging 48:119–142

    PubMed  CAS  Google Scholar 

  6. Bousson V, Moretti JL, Weinman P et al. (2000) Assessment of malignancy in pulmonary lesions: FDG dual-head coincidence gamma camera imaging in association with serum tumor marker measurement. J Nucl Med 41:1801–1807

    PubMed  CAS  Google Scholar 

  7. Brink I, Schumacher T, Mix M et al. (2004) Impact of 18 FFDG-PET on the primary staging of small cell lung cancer. Eur J Nucl Med Mol Imaging 31:1614–1620

    Article  PubMed  CAS  Google Scholar 

  8. Chan WL, Freund J, Pocock NA (2001) Coincidence detection FDG PET in the management of oncological patients: attenuation correction versus non-attenuation correction. Nucl Med Comm 22:1185–1192

    Article  CAS  Google Scholar 

  9. Delbeke D, Martin WH, Patton JA, Sandler MP (2001) Value of iterative reconstruction, attenuation correction, and image fusion in the interpretation of FDG PET images with an integrated dual-head coincidence camera and x-ray-based attenuation maps. Radiology 218:163–171

    PubMed  CAS  Google Scholar 

  10. Dietlein M, Moka D, Weber K et al. (2001) Kosteneffektivität der PET im Behandlungsalgorithmus der Lungentumoren: Ein Vergleich gesundheitsökonomischer Daten. Nuklearmedizin 40:122–128

    PubMed  CAS  Google Scholar 

  11. Dietlein M, Weber K, Grandjour A et al. (2000) Cost-effectiveness of FDG-PET for the management of solitary pulmonary nodules: a decision analysis based on cost reimbursement in Germany. Eur J Nucl Med 27:1441–1456

    Article  PubMed  CAS  Google Scholar 

  12. Erasmus JE, Page McAdams H, Connolly JE (2000) Solitary pulmonary nodules: Part II. Evaluation of the indeterminate nodule. Radiographics 20:69–66

    Google Scholar 

  13. Erasmus JJ, Mc Adams HP, Rossi SE, Goodman PC et al. (2000) FDG PET of pleural effusions in patients with non-small cell lung cancer. Am J Roentgenol 175:245–249

    CAS  Google Scholar 

  14. Farrel MA, McAdams HP, Herndon JE, Patz EF Jr (2000) Non-small cell lung cancer: FDG PET for nodal staging in patients with stage I disease. Radiology 215:886–890

    Google Scholar 

  15. Fowler J (2002) Nuclear medicine chemistry. J Nucl Med 42:14 N

    Google Scholar 

  16. Gambhir SS, Czernin J, Schwimmer J et al. (2001) A tabulated summary of the FDG PET literature. J Nucl Med (Suppl) 42:1–93

    Google Scholar 

  17. Gerbaudo VH, Sugarbaker DJ, Britz-Cunningham S et al. (2002) Assessment of malignant pleural mesothelioma with 18 F-FDG dual-head gamma-camera coincidence imaging: comparison with histopathology. J Nucl Med 43:1144–1149

    PubMed  Google Scholar 

  18. Goerres GW, von Schulthess GK, Steinert HC (2004) Why most PET of lung and head neck cancer will be PET/CT. J Nucl Med (Suppl 1) 45:66S–71S

    PubMed  Google Scholar 

  19. Hauber HP, Bohuslavicki KH, Lund CH et al. (2001) Positron emission tomography in the staging of small cell lung cancer-a preliminary study. Chest 119:950–954

    Article  PubMed  CAS  Google Scholar 

  20. Hertel A, Hör G (1999) Positronenemissionstomographie mit Gammakameras im Koinzidenzmodus. Der Nuklearmediziner 22:47–55

    Google Scholar 

  21. Hicks RJ, Kalff V, MacManus MP et al. (2001) The utility of 18 F-FDG PET for suspected recurrent non-small cell lung cancer after potentially curative therapy: Impact on management and prognostic stratification. J Nucl Med 42:1605–1613

    PubMed  CAS  Google Scholar 

  22. Higashi K, Ueda Y, Ayabe K et al. (2000) FDG PET in the evaluation of the aggressiveness of pulmonary adenocarcinoma: correlation with histopathological features. Nucl Med Comm 21:707–714

    Article  CAS  Google Scholar 

  23. Hoegerle S, Juengling F, Otte A et al. (1998) Combined FDG and F-18-fluoride whole body PET: a feasible two-in-one-approach to cancer imaging. Radiology 209:253–258

    PubMed  CAS  Google Scholar 

  24. Joshi U, Rajmakers PGH, van Lingen A et al. (2004) Evaluation of pulmonary nodules: concordance of a prototype dual crystal (LSO/NaI) dual head coincidence camera and full ring positron emission tomography (PET). Eur J Nucl Med Mol Imaging 31:S293

    Article  Google Scholar 

  25. Keidar Z, Haim N, Guralnik L et al. (2004) PET/CT using 18 F-FDG in suspected lung cancer recurrence: diagnostic value and impact on patient management. J Nucl Med 45:1640–1646

    PubMed  Google Scholar 

  26. Klett R, Röhrl A, Bauer R (2000) Nächtliche und belastungsbedingte pektanginöse Beschwerden durch vertebragene Dysfunktion. Herz Kreisl 32:309–311

    Google Scholar 

  27. Knopp MV, Strauss LG, Dimitrakopoulou A et al. (1991) Positron emission tomography (PET) in oncology — Its contribution for the diagnostic and therapeutic management of patients. In: Höfer R, Bergmann H, Sinzinger H (Hrsg) Radioaktive Isotope in Klinik und Forschung. Schattauer, Stuttgart, pp 522–523

    Google Scholar 

  28. Kubota K, Matsuzawa T, Fujiwara T et al. (1990) Differential diagnosis of lung tumor with positron emission tomography: A prospective study. J Nucl Med 31:1927–1933

    PubMed  CAS  Google Scholar 

  29. Lardinois D, Weder W, Hany TF et al. (2003) Staging of non-small cell lung cancer with integrated positron emission tomography and computed tomography. N Engl J Med 348:2500–2507

    Article  PubMed  Google Scholar 

  30. Lee J, Aronchick JM, Alavi A (2001) Accuracy of F-18 fluordeoxyglucose positron emission tomography for the evaluation of malignancy in patients presenting with new lung abnormalities. Chest 120:1791–1797

    Article  PubMed  CAS  Google Scholar 

  31. Lowe VJ, Hebert ME, Anscher MS, Coleman RE (1998) Serial evaluation of increased chest wall F-18 fluordeoxyglucose (FDG) uptake following radiation therapy in patients with bronchogenic carcinoma. Clin Pos Imag 1:185–191

    Article  Google Scholar 

  32. Marom EM, Erasmus JE, Patz EF Jr (2000) Lung cancer and positron emission tomography with fluorodeoxyglucose. Lung Cancer 28:187–202

    Article  PubMed  CAS  Google Scholar 

  33. Marom EM, Sarvis S, Herndon JE et al (2002) T1 lung cancers: Sensitivity of diagnosis with fluorodeoxyglucose PET. Radiology 223:453–459

    Article  PubMed  Google Scholar 

  34. Montravers F, Grahek D, Kerrou K et al. (2000) Evaluation of FDG uptake by renal malignancies (primary tumor and metastases) using a coincidence detection gamma camera. J Nucl Med 41:78–84

    PubMed  CAS  Google Scholar 

  35. Nakamoto Y, Tatsumi M, Cohade C et al. (2003) Accuracy of image fusion of normal upper abdominal organs visualized with PET/CT. Eur J Nucl Med Mol Imaging 30:597–602

    Article  PubMed  Google Scholar 

  36. Ost D, Fein A (2000) Evaluation and management of the solitary pulmonary nodule. Am J Respir Crit Care Med 162:782–787

    PubMed  CAS  Google Scholar 

  37. Pandit N, Gonen M, Krug L, Larson SM (2003) Prognostic value of (18) FDG-PET imaging in small cell lung cancer. Eur J Nucl Med 30:78–84

    Article  Google Scholar 

  38. Pieterman RM, van Putten JWG, Meuzelaar JJ et al. (2000) Preoperative Staging of NON-Small-Cell Lung Cancer with Positron-Emission-Tomography. N Engl J Med 343:245–261

    Article  Google Scholar 

  39. Reske S, Kotzerke J (2001) FDG-PET for clinical use (Results of the 3rd German Interdisciplinary Consensus Conference, «Onko-PET III», 21 July and 19 September 2000). Eur J Nucl Med 28:1707–1723

    Article  PubMed  CAS  Google Scholar 

  40. Rösch F (2004) Radionuklid-Generatorsysteme für die PET. Der Nuklearmediziner 27:226–235

    Article  Google Scholar 

  41. Schaffler GJ, Wolf G, Schoellnast H et al. (2004) Non-small cell lung cancer: Evaluation of pleural abnormalities on CT scans with 18F-FDG PET. Radiology 231:858–865

    Article  PubMed  Google Scholar 

  42. Schmid RA, Hautmann H, Poellinger B et al (2003) Staging of recurrent and advanced lung cancer with 18F-FDG PET in a coincidence technique (hybrid PET). Nucl Med Comm 24:37–45

    Article  CAS  Google Scholar 

  43. Schulthess GK von (2003) Clinical molecular anatomic imaging PET, PET/CT and SPECT/CT. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  44. Steinert HC (2004) PET und PET/CT beim Lungenkarzinom. Der Nuklearmediziner 27:278–287

    Article  Google Scholar 

  45. Thie JA (2004) Understanding the standardized uptake value, its methods, and implications for usage. J Nucl Med 45:1431–34

    PubMed  Google Scholar 

  46. Vahlensieck M (2000) Der pulmonale Rundherd — Dignitätsbeurteilung durch CT. Dt Ärztebl 97:C1871

    Google Scholar 

  47. van Overhage H, Broekel K, Heijenbrok MW et al. (2004) Metastases in supraclavicular lymphnodes in lung cancer: Assessment with palpation, US, and CT. Radiology 232:75–80

    Article  Google Scholar 

  48. van Tinteren H, Hoekstra OS, Smit EF et al. (2002) Effectiveness of positron emission tomography in the preoperative assessment of patients with suspected non small cell lung cancer: The PLUS multicentre randomized trial. Lancet 359:1388–1392

    Article  PubMed  Google Scholar 

  49. Vansteenkiste JF, Mortelsman LA (1999) FDG-PET in the locoregional lymphnode staging of non-small cell lung cancer: A comprehensive review of the Leuven lung cancer group experience. Clin Pos Imag 2:223–231

    Article  Google Scholar 

  50. von Schulthess GK (2004) Maximizing the benefit of integrated PET/CT: the road ahead. Eur J Nucl Med Mol Imaging 31:1462–1463

    Article  Google Scholar 

  51. Wahl A, Buck AK, Mueller A et al. (2004) CT, PET and PET/CT image fusion for the evaluation of suspicious pulmonary nodules and for staging NSCLC. Eur J Nucl Med Mol Imaging (Suppl 2) 31:S204–S205

    Google Scholar 

  52. Wahl RL (2004) Why nearly all PET of abdominal and pelvic cancers will be performed as PET/CT. J Nucl Med (Suppl 1) 45:82S–95S

    PubMed  Google Scholar 

  53. Weber W, Dietlein M, Hellwig D; Kirsch C, Schicha H, Schwaiger M (2003) PET with 18F-fluordeoxyglucose for staging of non-small-cell lung cancer: Evidence-based recommendations and cost-effectiveness. Nuklearmedizin 46:135–44

    Google Scholar 

  54. Wester HJ (2004) Entwicklung von PET-Tracern zur invivo-Charakterisierung der Tumorbiologie. Der Nuklearmediziner 27:218–225

    Article  Google Scholar 

  55. Zhao DS, Valdivia AY, Li Y, Blaufox MD (2002) 18F fluorodeoxy positron emission tomography in small cell lung cancer. Semin Nucl Med 32:272–5

    Article  PubMed  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2006). Pneumologie. In: PET/CT-Atlas. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-31215-3_3

Download citation

  • DOI: https://doi.org/10.1007/3-540-31215-3_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-31214-7

  • Online ISBN: 978-3-540-31215-4

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics