Skip to main content

Approximation of Stochastic Programming Problems

  • Conference paper

Summary

In Stochastic Programming, the aim is often the optimization of a criterion function that can be written as an integral or mean functional with respect to a probability measure \(\mathbb{P}\). When this functional cannot be computed in closed form, it is customary to approximate it through an empirical mean functional based on a random Monte Carlo sample. Several improved methods have been proposed, using quasi-Monte Carlo samples, quadrature rules, etc. In this paper, we propose a result on the epigraphical approximation of an integral functional through an approximate one. This result allows us to deal with Monte Carlo, quasi-Monte Carlo and quadrature methods. We propose an application to the epi-convergence of stochastic programs approximated through the empirical measure based on an asymptotically mean stationary (ams) sequence. Because of the large scope of applications of ams measures in Applied Probability, this result turns out to be relevant for approximation of stochastic programs through real data.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.E. Angus. The probability integral transform and related results. SIAM Rev., 36(4):652–654, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  2. Z. Artstein and R.J.-B. Wets. Consistency of minimizers and the SLLN for stochastic programs. J. Convex Anal., 2(1–2):1–17, 1995.

    MathSciNet  Google Scholar 

  3. H. Attouch. Variational convergence for functions and operators. Applicable Mathematics Series. Pitman (Advanced Publishing Program), Boston, MA, 1984.

    Google Scholar 

  4. J.R. Birge and F. Louveaux. Introduction to stochastic programming. Springer Series in Operations Research. Springer-Verlag, New York, 1997.

    Google Scholar 

  5. R.A. Boyles and W.A. Gardner. Cycloergodic properties of discrete-parameter nonstationary stochastic processes. IEEE Trans. Inform. Theory, 29(1):105–114, 1983.

    Article  MathSciNet  Google Scholar 

  6. L. Breiman. Probability, volume 7 of Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1992.

    Google Scholar 

  7. C. Choirat, C. Hess, and R. Seri. A functional version of the Birkhoff ergodic theorem for a normal integrand: a variational approach. Ann. Probab., 31(1):63–92, 2003.

    Article  MathSciNet  Google Scholar 

  8. C. Choirat, C. Hess, and R. Seri. Ergodic theorems for extended real-valued random variables. Working paper, 2004.

    Google Scholar 

  9. G. Dal Maso. An introduction to Γ-convergence. Progress in Nonlinear Differential Equations and their Applications, 8. Birkhäuser Boston Inc., Boston, MA, 1993.

    Google Scholar 

  10. K.-T. Fang and Y. Wang. Number-theoretic methods in statistics, volume 51 of Monographs on Statistics and Applied Probability. Chapman & Hall, London, 1994.

    Google Scholar 

  11. R.J. Fontana, R.M. Gray, and J.C. Kieffer. Asymptotically mean stationary channels. IEEE Trans. Inform. Theory, 27(3):308–316, 1981.

    Article  MathSciNet  Google Scholar 

  12. I.I. Gikhman and A.V. Skorokhod. Introduction to the theory of random processes. Translated from the Russian by Scripta Technica, Inc. W. B. Saunders Co., Philadelphia, Pa., 1969.

    Google Scholar 

  13. R.M. Gray and J.C. Kieffer. Asymptotically mean stationary measures. Ann. Probab., 8(5):962–973, 1980.

    MathSciNet  Google Scholar 

  14. C. Hess. Epi-convergence of sequences of normal integrands and strong consistency of the maximum likelihood estimator. Cahiers de Mathématiques de la Décision, No. 9121, Université Paris Dauphine, 1991.

    Google Scholar 

  15. C. Hess. Epi-convergence of sequences of normal integrands and strong consistency of the maximum likelihood estimator. Ann. Statist., 24(3):1298–1315, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  16. K.L. Judd. Numerical methods in economics. MIT Press, Cambridge, MA, 1998.

    Google Scholar 

  17. J.C. Kieffer and M. Rahe. Markov channels are asymptotically mean stationary. SIAM J. Math. Anal., 12(3):293–305, 1981.

    Article  MathSciNet  Google Scholar 

  18. M. Koivu. Variance reduction in sample approximations of stochastic programs. Working Paper, 2004.

    Google Scholar 

  19. L.A. Korf and R.J.-B. Wets. Random-lsc functions: an ergodic theorem. Math. Oper. Res., 26(2):421–445, 2001.

    Article  MathSciNet  Google Scholar 

  20. J.-J. Liang, K.-T. Fang, F.J. Hickernell, and R. Li. Testing multivariate uniformity and its applications. Math. Comp., 70(233):337–355, 2001.

    Article  MathSciNet  Google Scholar 

  21. T. Nakatsuka. Absorbing process in recursive stochastic equations. J. Appl. Probab., 35(2):418–426, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  22. J. Neveu. Bases mathématiques du calcul des probabilités. Masson et Cie, Éditeurs, Paris, 1964.

    Google Scholar 

  23. A.B. Owen. Monte Carlo variance of scrambled net quadrature. SIAM J. Numer. Anal., 34(5):1884–1910, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  24. A.B. Owen. Scrambled net variance for integrals of smooth functions. Ann. Statist., 25(4):1541–1562, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  25. T. Pennanen. Epi-convergent discretizations of multistage stochastic programs. Stochastic Programming E-Print Series, Number 2004-03, 2004.

    Google Scholar 

  26. T. Pennanen and M. Koivu. Integration quadratures in discretizations of stochastic programs. Stochastic Programming E-Print Series, Number 2002-11, 2002.

    Google Scholar 

  27. T. Pennanen and M. Koivu. Epi-convergent discretizations of stochastic programs via integration quadratures. Stochastic Programming E-Print Series, Number 2003-16, 2003.

    Google Scholar 

  28. T. Rolski. Queues with nonstationary inputs. Queueing Systems Theory Appl., 5(1–3):113–129, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  29. M. Rosenblatt. Remarks on a multivariate transformation. Ann. Math. Statistics, 23:470–472, 1952.

    MATH  MathSciNet  Google Scholar 

  30. W. Szczotka. Stationary representation of queues. I. Adv. in Appl. Probab., 18(3):815–848, 1986.

    Article  MATH  MathSciNet  Google Scholar 

  31. W. Szczotka. Stationary representation of queues. II. Adv. in Appl. Probab., 18(3):849–859, 1986.

    Article  MATH  MathSciNet  Google Scholar 

  32. M. Valadier. Conditional expectation and ergodic theorem for a positive integrand. J. Nonlinear Convex Anal., 1(3):233–244, 2000.

    MATH  MathSciNet  Google Scholar 

  33. M. Valadier. What differentiates stationary stochastic processes from ergodic ones: a survey. Sūrikaisekikenkyūsho Kōkyūroku, (1215):33–52, 2001.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Choirat, C., Hess, C., Seri, R. (2006). Approximation of Stochastic Programming Problems. In: Niederreiter, H., Talay, D. (eds) Monte Carlo and Quasi-Monte Carlo Methods 2004. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-31186-6_4

Download citation

Publish with us

Policies and ethics