Skip to main content

On Ergodic Measures for McKean-Vlasov Stochastic Equations

  • Conference paper
Monte Carlo and Quasi-Monte Carlo Methods 2004

Summary

Conditions for existence and uniqueness of invariant measures and weak convergence to these measures for stochastic McKean-Vlasov equations have been established, along with similar approximation results and a new version of existence and uniqueness of strong solutions to these equations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Benachour, S., Roynette, B., Talay, D., Vallois, P.: Nonlinear self-stabilizing processes. I: Existence, invariant probability, propagation of chaos. Stochastic Processes Appl. 75(2), 173–201 (1998)

    Article  MathSciNet  Google Scholar 

  2. Benachour, S., Roynette, B., Vallois, P.: Nonlinear self-stabilizing processes. II: Convergence to invariant probability, Stochastic Processes Appl. 75(2), 203–224, (1998)

    Article  MathSciNet  Google Scholar 

  3. Benedetto, D., Caglioti, E., Carrillo, J.A., Pulvirenti, M.: A non-Maxwellian steady distribution for one-dimensional granular media. J. Stat. Phys. 91(5–6), 979–990 (1998)

    Article  MathSciNet  Google Scholar 

  4. Bossy, M., Talay, D.: A stochastic particle method for the McKean-Vlasov and the Burgers equation. Math. Comput. 66, No. 217, 157–192 (1997)

    Article  MathSciNet  Google Scholar 

  5. Dawson, D.A., Gärtner, J.: Large deviations from the McKean-Vlasov limit for weakly interacting diffusions. Stochastics 20, 247–308 (1987)

    MathSciNet  Google Scholar 

  6. Funaki, T.: A certain class of diffusion processes associated with nonlinear parabolic equations. Z.Wahrscheinlichkeitstheor. Verw. Geb., 67, 331–348 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  7. Kac, M.: Foundations of kinetic theory. Proc. 3rd Berkeley Sympos. Math. Statist. Probability, Vol.3, 171–197 (1956)

    MATH  Google Scholar 

  8. Klokov, S.A.: On lower bounds for mixing rates for a class of Markov Processes (Russian). Teor. Veroyatnost. i Primenen, submitted; preprint version at http://www.mathpreprints.com/math/Preprint/ klokov/20020920/1/

    Google Scholar 

  9. Klokov, S.A., Veretennikov, A.Yu.: Polynomial mixing and convergence rate for a class of Markov processes, (Russian) Teor. Veroyatnost. i Primenen., 49(1), 21–35, (2004); Engl. translation to appear

    MathSciNet  Google Scholar 

  10. Kotelenez, P.: A class of quasilinear stochastic partial differential equations of McKean-Vlasov type with mass conservation. Probab. Theory Relat. Fields, 102(2), 159–188 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  11. Krylov, N.V.: Controlled diffusion processes. NY et al., Springer (1980)

    Google Scholar 

  12. Landau, L.D., Lifshitz, E.M. Course of theoretical physics, Vol. 10, Physical kinetics/by E. M. Lifshitz and L. P. Pitaevskii, Oxford, Pergamon (1981)

    Google Scholar 

  13. Malrieu, F.: Logarithmic Sobolev inequalities for some nonlinear PDE’s. Stochastic Process. Appl., 95(1), 109–132 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  14. McKean, H.P.: A class of Markov processes associated with nonlinear parabolic equations. Proc. Natl. Acad. Sci. USA 56, 1907–1911 (1966)

    MATH  MathSciNet  Google Scholar 

  15. Nagasawa, M.: Schrödinger equations and diffusion theory. Basel: Birkhäuser (1993)

    Google Scholar 

  16. Shiga, T.: Stationary distribution problem for interacting diffusion systems. In: Dawson, D. A. (ed.) Measure-valued processes, stochastic partial differential equations, and interacting systems. Providence, RI, American Mathematical Society, CRM Proc. Lect. Notes, 5, 199–211 (1994)

    Google Scholar 

  17. Skorokhod, A.V.: Studies in the theory of random processes. Reading, Mass., Addison-Wesley (1965)

    Google Scholar 

  18. Skorokhod, A.V.: Stochastic equations for complex systems. Dordrecht (Netherlands) etc., D. Reidel Publishing Company (1988)

    Google Scholar 

  19. Sznitman, A.-S.: Topics in propagation of chaos. Calcul des probabilités, Ec. d’été, Saint-Flour/Fr. 1989, Lect. Notes Math. 1464, 165–251 (1991)

    MATH  MathSciNet  Google Scholar 

  20. Tamura, Y.: On asymptotic behavior of the solution of a non-linear diffusion equation. J. Fac. Sci., Univ. Tokyo, Sect. I A 31, 195–221 (1984)

    MATH  Google Scholar 

  21. Veretennikov, A.Yu.: On strong solutions and explicit formulas for solutions of stochastic integral equations. Math. USSR Sb., 39, 387–403 (1981)

    Article  MATH  Google Scholar 

  22. Veretennikov, A.Yu.: On polynomial mixing bounds for stochastic differential equations. Stochastic Processes Appl. 70(1), 115–127 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  23. Veretennikov, A. Yu. On polynomial mixing and the rate of convergence for stochastic differential and difference equations. (Russian) Teor. Veroyatnost. i Primenen. 44, 1999, no. 2, 312–327; English translation: Theory Probab. Appl. 44, no. 2, 361–374 (1999)

    MATH  MathSciNet  Google Scholar 

  24. Veretennikov, A.Yu., Klokov, S.A.: On the mixing rates for the Euler scheme for stochastic difference equations. (Russian), Dokl. Akad. Nauk (Doklady Acad. Sci. of Russia), 395(6), 738–739 (2004); Engl. translation to appear

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Veretennikov, A.Y. (2006). On Ergodic Measures for McKean-Vlasov Stochastic Equations. In: Niederreiter, H., Talay, D. (eds) Monte Carlo and Quasi-Monte Carlo Methods 2004. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-31186-6_29

Download citation

Publish with us

Policies and ethics