Skip to main content

A Mechanobiological Formulation of Bone Healing

  • Chapter
Mechanics of Biological Tissue

5 Discussion and Conclusions

We have presented in this paper a general constitutive theory for growth, differentiation and damage of living tissues. This model is assumed to be controlled by mechanical influences, although other effects could also be included, such as chemical reactions, growth factors, and so on. The governing equations have been derived by considering the extracellular matrix concentration and the cellular population.

Following the framework of this formulation, one theoretical particularization has been developed to show its potential: the modelling of bone fracture healing. It is a complex process where growth, differentiation and damage act on the tissue.

Although the particularization shown here presents some simplifications (small deformations, no residual stresses, null cell-matrix interaction and so on) the global formulation proposed is sufficiently general to be used in other biomechanical applications, such as limb lengthening, tendons and vessel growth and remodelling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barber, C. B., Dobkin, D. P., and Huhdanpaa, H. (1996). The quickhull algorithm for convex hulls. ACM Trans. Math. Software 22:469–483.

    Article  MathSciNet  MATH  Google Scholar 

  • Burr, D. B., Turner, C. H., Naick, P., Forwood, M. R., Ambrosius, W., Hasan, M. S., and Pidaparti, R. (1998). Does microdamage accumulation affect the mechanical properties of bone? J. Biomech. 31:337–345.

    Article  Google Scholar 

  • Carter, D. R., Beaupre, G. S., Giori, N. J., and Helms, J. A. (1998). Mechanobiology of skeletal regeneration. Clin. Orthop. S355:S41–S55.

    Article  Google Scholar 

  • Claes, L., Augat, P., Suger, G., and Wilke, H. J. (1997). Influence of size and stability of the osteotomy gap on the success of fracture healing. J. Orthop. Res. 15:577–584.

    Article  Google Scholar 

  • Cowin, S. C., and Hegedus, D. H. (1976). Bone remodelling I: Theory of adaptive elasticity. J. Elasticity 6:313–326.

    Article  MathSciNet  MATH  Google Scholar 

  • Cowin, S. C. (2004). Tissue growth and remodeling. Ann. Rev. Biomed. Eng. 6:77–107.

    Article  Google Scholar 

  • García-Aznar, J. M., Kuiper, J. H., Gómez-Benito, M. J., Doblaré, M., and Richardson, J. B. (2005). Computational simulation of fracture healing. J. Biomech. in press.

    Google Scholar 

  • Garikipati, K., Arruda, E. M., Grosh, K., Narayanan, H., and Calve, S. (2004). A continuum treatment of growth in biological tissue: the coupling of mass transport and mechanics. J. Mech. Phys. Solids 52:1595–1626.

    Article  MathSciNet  MATH  Google Scholar 

  • Gómez-Benito, M. J., García-Aznar, J. M., Kuiper, J. H., and Doblaré, M. (2005). Influence of fracture gap size on the pattern of long bone healing: A computational study. J. Theoret. Biol. in press.

    Google Scholar 

  • Humphrey, J. D. (1995). Mechanics of the arterial wall: Review and directions. Crit. Rev. Biomed. Eng. 23:1–162.

    Google Scholar 

  • Kuhl, E., and Steinmann, P. (2003). Theory and numerics of geometrically non-linear open system mechanics. Int. J. Numer. Meth. Eng. 58: 1593–1615.

    Article  MathSciNet  MATH  Google Scholar 

  • Kuhl, E., and Steinmann, P. (2004). Computational modeling of healing: An application of the material force method. Biomech. Model. Mechanobio. 2:187–203.

    Google Scholar 

  • Levick, J. R. (1987). Flow through interstitium and other fibrous matrices. Q. J. Exp. Physiol. 72:409–438.

    Google Scholar 

  • Lubarda, V. A., and Hoger, A. (2002). On the mechanics of solids with a growing mass. Int. J. Solids Structures 39:4627–4664.

    Article  MATH  Google Scholar 

  • Oster, G. F., Murray, J. D., and Harris, A. K. (1983). Mechanical aspects of mesenchymal morphogenesis. J. Embryol. Exp. Morph. 78:83–125.

    Google Scholar 

  • Prendergast, P. J., Huiskes, R., and Soballe, K. (1997). Biophysical stimuli on cells during tissue differentiation at implant interfaces. J. Biomech. 6: 539–548.

    Article  Google Scholar 

  • Skalak, R., Dasgupta, G., Moss, M., Otten, E., Dullemeijer, P., and Vilmann, H. (1982). Analytical description of growth. J. Theoret. Biol. 94:555–577.

    Article  MathSciNet  Google Scholar 

  • Taber, L. A. (1995). Biomechanics of growth, remodelling, and morphognesis. Appl. Mech. Rev. 48:487–545.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Doblaré, M., García-Aznar, J.M., Gómez-Benito, M.J. (2006). A Mechanobiological Formulation of Bone Healing. In: Holzapfel, G.A., Ogden, R.W. (eds) Mechanics of Biological Tissue. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-31184-X_8

Download citation

  • DOI: https://doi.org/10.1007/3-540-31184-X_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25194-1

  • Online ISBN: 978-3-540-31184-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics