Skip to main content

Modeling and Simulation of Remodeling in Soft Biological Tissues

  • Chapter
Mechanics of Biological Tissue

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arruda, E. M., and Boyce, M. C. (1993). A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials. J. Mech. Phys. Solids 41:389–412.

    Article  Google Scholar 

  • Bischoff, J. E., Arruda, E. M., and Grosh, K. (2002). A microstructurally based orthotropic hyperelastic constitutive law. J. Appl. Mech. 69:570–579.

    Article  Google Scholar 

  • Boyce, M. C., and Arruda, E. M. (2000). Constitutive models of rubber elasticity: A review. Rubber Chem. Technol. 73:504–523.

    Google Scholar 

  • Bustamante, C., Smith, S., Marko, J. F., and Siggia, E. D. (1994). Entropic elasticity of lambda-phage DNA. Science 265:1599–1600.

    Google Scholar 

  • Calve, S., Dennis, R. G., Kosnik, P. E., Baar, K., Grosh, K., and Arruda, E. M. (2005). Engineering of functional tendon. Tissue Eng in press.

    Google Scholar 

  • Cowin, S. C. (1995). Optimization of the strain energy density in linear anisotropic elasticity. J. Elasticity 34:45–68.

    Article  MathSciNet  Google Scholar 

  • Driessen, N. J. B., Peters, G. W. M., Huyghe, J. M., Bouten, C. V. C., and Baaijens, F. P. T. (2003). Remodelling of continuously distributed collagen fibres in soft connective tissue. J. Biomech. 36:1151–1158.

    Article  Google Scholar 

  • Flory, P. J. (1969). Statistical Mechanics of Chain Molecules. New York: Wiley — Interscience.

    Google Scholar 

  • Garikipati, K., Arruda, E. M., Grosh, K., Narayanan, H., and Calve, S. (2004). A continuum treatment of growth in biological tissue: The coupling of mass transport and mechanics. J. Mech. Phys. Solids 52:1595–1625.

    Article  MathSciNet  Google Scholar 

  • Holzapfel, G. A., and Ogden, R. W., eds. (2003). Biomechanics of Soft Tissue in Cardiovascular Systems. Wien — New York: Springer-Verlag.

    Google Scholar 

  • Holzapfel, G. A., Gasser, T. C., and Ogden, R. W. (2000). A new constitutive framework for arterial wall mechanics and a comparative study of material models. J. Elasticity 61:1–48.

    Article  MathSciNet  Google Scholar 

  • Holzapfel, G. A., Gasser, T. C., and Ogden, R. W. (2004). Comparison of a multi-layer structural model for arterial walls with a Fung-type model, and issues of material stability. J. Biomech. Eng. 126:264–275.

    Article  Google Scholar 

  • Holzapfel, G. A. (2000). Nonlinear Solid Mechanics. A Continuum Approach for Engineering. Chichester: John Wiley & Sons.

    Google Scholar 

  • Humphrey, J. D. (2002). Cardiovascular Solid Mechanics. Cells, Tissues, and Organs. New York: Springer-Verlag.

    Google Scholar 

  • Kratky, O., and Porod, G. (1949). Röntgenuntersushung gelöster Fadenmoleküle. Recl. Trav. Chim. Pays-Bas. 68:1106Ű–1123.

    Google Scholar 

  • Kuhl, E., Garikipati, K., Arruda, E. M., and Grosh, K. (2005a). Remodeling of biological tissue: Mechanically induced reorientation of a transversely isotropic chain network. J. Mech. Phys. Solids. in press.

    Google Scholar 

  • Kuhl, E., Menzel, A., and Garikipati, K. (2005b). On the convexity of transversely isotropic chain network models. Phil. Mag. Lett. in press.

    Google Scholar 

  • Marko, J. F., and Siggia, E. D. (1995). Stretching DNA. Macromolecules 28:8759–8770.

    Article  Google Scholar 

  • Menzel, A. (2005). Modelling of anisotropic growth in biological tissues. A new approach and computational aspects. Biomech. Model. Mechanobio. 3:147–171.

    Article  Google Scholar 

  • Miehe, C., Göktepe, S., and Lulei, F. (2004). A micro-macro approach to rubber-like materials — Part I: The non-affine micro-sphere model of rubber elasticity. J. Mech. Phys. Solids 52:2617–2660.

    Article  MathSciNet  Google Scholar 

  • Sgarra, C., and Vianello, M. (1997). Rotations which make strain and stress coaxial. J. Elasticity 47:217–224.

    Article  MathSciNet  Google Scholar 

  • Treloar, L. R. G. (1975). The Physics of Rubber Elasticity. Oxford: Oxford University Press, 3rd edition.

    Google Scholar 

  • Vianello, M. (1996). Coaxiality of strain and stress in anisotropic linear elasticity. J. Elasticity 42:283–289.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kuhl, E., Menzel, A., Garikipati, K., Arruda, E.M., Grosh, K. (2006). Modeling and Simulation of Remodeling in Soft Biological Tissues. In: Holzapfel, G.A., Ogden, R.W. (eds) Mechanics of Biological Tissue. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-31184-X_6

Download citation

  • DOI: https://doi.org/10.1007/3-540-31184-X_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25194-1

  • Online ISBN: 978-3-540-31184-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics