Skip to main content

Creep and Relaxation in Ligament: Theory, Methods and Experiment

  • Chapter
Book cover Mechanics of Biological Tissue

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abrahams, M. (1967). Mechanical behaviour of tendon in vitro. A preliminary report. Med. Biol. Eng. 5:433–443.

    Google Scholar 

  • Abramowitsch, S. D., and Woo, S. L. (2004). An improved method to analyze the stress relaxation of ligaments following a finite ramp time based on quasi-linear viscoelastic theory. J. Biomech. Eng. 126:92–97.

    Article  Google Scholar 

  • Abramowitsch, S. D., Woo, S. L., Clineff, T. D., and Debski, R. E. (2004). An evaluation of quasi-linear viscoelastic properties of healing medial collateral ligament in a goat model. Ann. Biomed. Eng. 32:329–335.

    Article  Google Scholar 

  • Atkinson, T. S. (1997). A microstructural poroelastic model for patellar tendon. In Proceedings ASME Bioengineering Conference. Sunriver, OR.

    Google Scholar 

  • Best, T. M., McElhaney, J., Garrett Jr., W. E., and Myers, B. S. (1994). Characterization of passive response of live skeletal muscle using quasilinear viscoelastic theory of viscoelasticity. J. Biomech. 27:413–419.

    Article  Google Scholar 

  • Broom, N. D. (1978). Simultaneous morphological and stress-strain studies of the fibrous components in wet heart valve leaflet tissue. Conn. Tiss. Res. 6:37–50.

    Article  Google Scholar 

  • Carew, E. O., Talman, E. A., Boughner, D. R., and Vesely, I. (1999). Quasilinear viscoelastic theory applied to internal shearing of porcine aortic leaflets. J. Biomech. Eng. 121:386–392.

    Google Scholar 

  • Carew, E. O., Barber, J. E., and Vesely, I. (2000). Role of preconditioning and recovery time in repeated testing of aortic valve tissues: Validation through quasilinear viscoelastic theory. Ann. Biomed. Eng. 28:1093–1100.

    Article  Google Scholar 

  • Chimich, D., Shrive, N., Frank, C., Marchuk, L., and Bray, R. (1992). Water content alters viscoelastic behavior of the normal adolescent rabbit medial collateral ligament. J. Biomech. 25:831–837.

    Article  Google Scholar 

  • Demiray, H. (1996). A quasi-linear relation for arterial wall materials. J. Biomech. 29:1011–1014.

    Article  Google Scholar 

  • Diamant, J., Keller, A., Baer, E., Litt, M., and Arridge, R. G. C. (1972). Collagen: Ultrastructure and its relation to mechanical properties as a function of ageing. Proc. R. Soc. Lond. B 180:293–315.

    Article  Google Scholar 

  • Elliott, D. M., Robinson, P. S., Gimbel, J. A., Sarver, J. J., Abboud, J. A., Iozzo, R. V., and Soslowsky, L. J. (2003). Effect of altered matrix proteins on quasilinear viscoelastic properties in transgenic mouse tail tendons. Ann. Biomed. Eng. 31:599–605.

    Article  Google Scholar 

  • Findley, W. N., Lai, J. S., and Onaran, K. (1976). Creep and Relaxation of Nonlinear Viscoelastic Materials. Amsterdam: North Holland.

    MATH  Google Scholar 

  • Fung, Y. C. (1972). Stress strain history relations of soft tissues in simple elongation. In Fung, Y. C., Perrone, N., and Anliker, M., eds., Biomechanics: Its Foundations and Objectives. New Jersey: Prentice-Hall, Englewood Cliffs.

    Google Scholar 

  • Funk, J. R., Hall, G. W., Crandall, J. R., and Pilkey, W. D. (2000). Linear and quasilinear viscoelastic characterization of ankle ligaments. J. Biomech. Eng. 122:15–22.

    Article  Google Scholar 

  • Graf, B., Vanderby, R., Ulm, M., Rogalski, R., and Thielke, R. (1994). The effect of preconditioning on the viscoelastic response of primate patellar tendon. Arthroscopy 10:90–96.

    Article  Google Scholar 

  • Hannafin, J. A., and Arnoczky, S. P. (1994). Effect of cyclic and static tensile loading on the water content and solute diffusion in canine flexor tendons: and in vitro study. J. Orthop. Res. 12:350–356.

    Article  Google Scholar 

  • Haut, R. C., and Little, R. W. (1972). A constitutive equation for collagen fibers. J. Biomech. 5:423–430.

    Article  Google Scholar 

  • Hingorani, R., Provenzano, P. P., Lakes, R. S., Escarcega, A., and Vanderby Jr., R. (2004). Nonlinear viscoelasticity in rabbit medial collateral ligament. Ann. Biomed. Eng. 32:306–312.

    Article  Google Scholar 

  • Huyghe, J. M., van Campen, D. H., Arts, T., and Heethaar, R. M. (1991). The constitutive behaviour of passive heart muscle tissue. A quasi-linear viscoelastic formulation. J. Biomech. 24:841–849.

    Article  Google Scholar 

  • Jensen, K. T., Dwyer, K. W., Lakes, R. S., and Vanderby, R. (2004). The rate of viscoelastic recovery is faster than the rate of creep. In 50th Annual Meeting of the Orthopaedic Research Society. San Francisco, CA, paper 0046.

    Google Scholar 

  • Johnson, G. A., Tramaglini, D. M., Levine, R. E., Ohne, K., Choi, N. Y., and Woo, S. L. Y. (1994). Tensile and viscoelastic properties of human patellar tendon. J. Orthop. Res. 12:796–803.

    Article  Google Scholar 

  • Johnson, G. A., Livesay, G. A., Woo, S. L. Y., and Rajagopal, K. R. (1996). A single integral finite strain viscoelastic model of ligaments and tendons. J. Biomech. Eng. 118:221–226.

    Google Scholar 

  • Kwan, M. K., Lin, T. H. C., and Woo, S. L. Y. (1993). On the viscoelastic properties of the anteromedial bundle of the anterior cruciate ligament. J. Biomech. 26:447–442.

    Article  Google Scholar 

  • Lakes, R. S., and Vanderby, R. (1999). Interrelation of creep and relaxation: a modeling approach for ligament. J. Biomech. Eng. 121:612–615.

    Google Scholar 

  • Lakes, R. S. (1998). Viscoelastic Solids. Boca Raton, Florida: CRC Press.

    Google Scholar 

  • Lanir, Y. (1980). A microstructure model for the rheology of mammalian tendon. J. Biomech. Eng. 102:332–339.

    Google Scholar 

  • Liao, J., and Vesely, I. (2004). Relationship between collagen fibrils, glycosaminoglycans, and stress relaxation in mitral valve chordae tendineae. Ann. Biomed. Eng. 32:977–983.

    Article  Google Scholar 

  • Manley, E., Provenzano, P., Heisey, D., Lakes, R. S., and Vanderby, R. (2003). Required test duration for group comparisons in ligament viscoelasticity: A statistical approach. Biorheology 40:441–450.

    Google Scholar 

  • Morgan, C. J., and Ward, I. M. (1971). The temperature dependence of nonlinear creep and recovery in oriented polypropylene. J. Mech. Phys. Solids 19:164–178.

    Google Scholar 

  • Oza, A., Vanderby, R., and Lakes, R. S. (2003). Interrelation of creep and relaxation for nonlinearly viscoelastic materials: application to ligament and metal. Rheol. Acta 42:557–568.

    Article  Google Scholar 

  • Oza, A., Jaglinski, T., Vanderby, R., and Lakes, R. S. (2004). Application of nonlinear superposition to creep and relaxation of commercial die-casting aluminum alloys. Mech. Time-Depend. Mat. 8:385–402.

    Article  Google Scholar 

  • Pioletti, D. P., and Rakotomanana, L. R. (2000). On the independence of time and strain effects in the stress relaxation of ligaments and tendons. J. Biomech. 33:1729–1732.

    Article  Google Scholar 

  • Provenzano, P., Lakes, R. S., Keenan, T., and Vanderby, R. (2001). Non-linear ligament viscoelasticity. Ann. Biomed. Eng. 28:908–914.

    Article  Google Scholar 

  • Provenzano, P., Hayashi, K., Kunz, D. N., Markel, M. D., and Vanderby, R. (2002a). Healing of subfailure ligament injury: comparison between immature and mature ligaments in a rat model. J. Orthop. Res. 20:975–983.

    Article  Google Scholar 

  • Provenzano, P., Heisey, D., Hayashi, K., Lakes, R. S., and Vanderby, R. (2002b). Subfailure damage in ligament: A structural and cellular evaluation. J. Appl. Physiol. 92:362–371.

    Google Scholar 

  • Puso, M. A., and Weiss, J. A. (1998). Finite element implementation of anisotropic quasi-linear viscoelasticity using a discrete spectrum approximation. J. Biomech. Eng. 120:62–70.

    Google Scholar 

  • Rigby, B. J., Hirai, N., Spikes, J. D., and Eyring, H. (1959). The mechanical properties of rat tail tendon. J. Gen. Physiol. 43:265–289.

    Article  Google Scholar 

  • Robinson, P. S., Lin, T. W., Reynolds, P. R., Derwin, K. A., Iozzo, R. V., and Soslowsky, L. J. (2004a). Strain-rate sensitive mechanical properties of tendon fascicles from mice with genetically engineered alterations in collagen and decorin. J. Biomech. Eng. 126:252–257.

    Article  Google Scholar 

  • Robinson, P. S., Lin, T. W., Reynolds, P. R., Jawad, A. F., Iozzo, R. V., and Soslowsky, L. J. (2004b). Investigating tendon-fascicle structure-function relationships in a transgenic-age mouse model using multiple regression models. Ann. Biomed. Eng. 32:924–931.

    Article  Google Scholar 

  • Rubin, M. B., Bodner, S. R., and Binur, N. S. (1998). An elastic-viscoplastic model for excised facial tissues. J. Biomech. Eng. 120:686–689.

    Google Scholar 

  • Sarver, J. J., Robinson, P. S., and Elliott, D. M. (2003). Methods of quasilinear viscoelastic modeling of soft tissue: Application to incremental stress-relaxation experiments. J. Biomech. Eng. 125:754–758.

    Article  Google Scholar 

  • Thielke, R. J., Vanderby, R., and Grood, E. S. (1995). Volumetric changes in ligaments under tension. In Proceedings ASME Bioengineering Conference. Breckenridge, CO.

    Google Scholar 

  • Thornton, G. M., Oliynyk, A., Frank, C. B., and Shrive, N. G. (1997). Ligament creep cannot be predicted from stress relaxation at low stresses: a biomechanical study of the rabbit medial collateral ligament. J. Orthop. Res. 15:652–656.

    Article  Google Scholar 

  • Thornton, G. M., Frank, C. B., and Shrive, N. G. (2001a). Ligament creep behavior can be predicted from stress relaxation by fiber recruitment. J. Rheol. 45:493–507.

    Article  Google Scholar 

  • Thornton, G. M., Shrive, N. G., and Frank, C. B. (2001b). Altering ligament water content affects ligament pre-stress and creep behavior. J. Orthop. Res. 19:845–851.

    Article  Google Scholar 

  • Thornton, G. M., Shrive, N. G., and Frank, C. B. (2002). Ligament creep recruits fibres at low stresses and can lead to modulus-reducing fibre damage a higher creep stresses: a study in rabbit medial collateral ligament model. J. Orthop. Res. 20:967–974.

    Article  Google Scholar 

  • Turner, S. (1973). Creep in glassy polymers. In Howard, R. H., ed., The Physics of Glassy Polymers. Chichester: John Whiley & Sons.

    Google Scholar 

  • Viidik, A., Danielsen, C. C., and Oxlund, H. (1982). On fundamental and phenomenological models, structure and mechanical properties of collagen, elastin and gycolsaminoglycan complexes. Biorheology 19:437–451.

    Google Scholar 

  • Viidik, A. (1968). A rheological model for uncalcified parallel-fibered collagenous tissue. J. Biomech. 1:3–11.

    Article  Google Scholar 

  • Viidik, A. (1973). Functional properties of collagenous tissues. Int. Rev. Conn. Tiss. Res. 6:127–215.

    Google Scholar 

  • Woo, S. L., Simon, B. R., Kuei, S. C., and Akeson, W. H. (1980). Quasilinear viscoelastic properties of normal articular cartilage. J. Biomech. Eng. 102:85–90.

    Article  Google Scholar 

  • Woo, S. L., Gomez, M. A., and Akeson, W. H. (1981). The time and history-dependent viscoelastic properties of the canine medial collateral ligament. J. Biomech. Eng. 103:293–298.

    Google Scholar 

  • Woo, S. L. (1982). Mechanical properties of tendons and ligaments I. quasistatic and nonlinear viscoelastic properties. Biorheology 19:384–396.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Oza, A.L., Vanderby, R., Lakes, R.S. (2006). Creep and Relaxation in Ligament: Theory, Methods and Experiment. In: Holzapfel, G.A., Ogden, R.W. (eds) Mechanics of Biological Tissue. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-31184-X_27

Download citation

  • DOI: https://doi.org/10.1007/3-540-31184-X_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25194-1

  • Online ISBN: 978-3-540-31184-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics