Skip to main content

Invariant Formulation for Dispersed Transverse Isotropy in Tissues of the Aortic Outflow Tract

  • Chapter
  • 2826 Accesses

5 Conclusion

We have proposed an efficient, invariant-based alternative to structural constitutive equations that accounts for statistical dispersion of fibers. In contrast to existing models, our new invariant theory easily handles a 3D fiber population with a single mean preferred direction. The invariant theory is based on a novel closed-form ‘splay invariant’ that requires a single parameter in the 2D case, and two parameters in the 3D case. The proposed model is polyconvex, and fits biaxial data for aortic valve tissue better than existing aortic-valve models Billiar and Sacks (2000). A modification in the fiber stress-strain law requires no re-formulation of the constitutive tangent matrix, making the model flexible for different types of soft tissues. Most importantly, the model is computationally expedient in a finite element analysis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Billiar, K. L., and Sacks, M. S. (2000). Angioscopic findings during coronary angioplasty of coronary occlusions.biaxial mechanical properties of the natural and glutaraldehyde-treated aortic valve cusp — Part II: A structural constitutive model. J. Biomech. Eng. 122:327–335.

    Article  Google Scholar 

  • Einstein, D. R., Freed, A. D., Stander, N., Fata, B., and Vesely, I. (2005). Inverse parameter fitting of biological tissues: A response surface approach. submitted.

    Google Scholar 

  • Einstein, D. R. (2002). Nonlinear Acoustic Analysis of the Mitral Valve. Ph.D. Dissertation, University of Washington, Seattle.

    Google Scholar 

  • Flory, P. J. (1961). Thermodynamic relations for high elastic materials. Trans. Faraday Soc. 57:829–838.

    Article  MathSciNet  Google Scholar 

  • Freed, A. D., and Doehring, T. C. (2005). Elastic model for crimped collagen fibrils. J. Biomech. Eng. in press.

    Google Scholar 

  • Holzapfel, G. A., Gasser, T. C., and Stadler, M. (2002). A structural model for the viscoelastic behavior of arterial walls: Continuum formulation and finite element analysis. Eur. J. Mech. A/Solids 21:441–463.

    Article  Google Scholar 

  • Lanir, Y. (1983). Constitutive equations for fibrous connective tissues. J. Biomech. 16:1–12.

    Article  Google Scholar 

  • Malkus, D. S., and Hughes, T. J. R. (1978). Mixed finite element methods — reduced and selective integration techniques: A unification of concept. Comput. Meth. Appl. Mech. Eng. 15:63–81.

    Article  Google Scholar 

  • Sacks, M. S. (2000). Biaxial mechanical evaluation of planar biological materials. J. Elasticity 61:199–246.

    Article  MATH  Google Scholar 

  • Sacks, M. S. (2003). Incorporation of experimentally-derived fiber orientation into a structural consitutive model for planar collagenous tissues. J. Biomech. Eng. 125:280–287.

    Article  Google Scholar 

  • Simo, J. C., and Hughes, T. J. R. (1998). Computational Inelasticity. New York: Springer-Verlag.

    Google Scholar 

  • Spencer, A. J. M. (1972). Deformations of Fibre-reinforced Materials. Oxford: Clarendon Press.

    Google Scholar 

  • Sussman, T., and Bathe, K.-J. (1987). A finite element formulation for nonlinear incompressible elastic and inelastic analysis. Comput. Struct. 26:357–409.

    Article  Google Scholar 

  • Zioupos, P., and Barbenel, J. C. (1994). Mechanics of native bovine pericardium. i. the multiangular behaviour of strength and stiffness of the tissue. Biomaterials 15:366–373.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Einstein, D.R., Freed, A.D., Vesely, I. (2006). Invariant Formulation for Dispersed Transverse Isotropy in Tissues of the Aortic Outflow Tract. In: Holzapfel, G.A., Ogden, R.W. (eds) Mechanics of Biological Tissue. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-31184-X_25

Download citation

  • DOI: https://doi.org/10.1007/3-540-31184-X_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25194-1

  • Online ISBN: 978-3-540-31184-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics