Advertisement

Epigenetic Regulation in Drosophila

  • F. LykoEmail author
  • C. Beisel
  • J. Marhold
  • R. Paro
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 310)

Abstract

Epigenetic regulation of gene transcription relies on molecular marks like DNA methylation or histone modifications. Here we review recent advances in our understanding of epigenetic regulation in the fruit fly Drosophila melanogaster. In the past, DNA methylation research has primarily utilized mammalian model systems. However, several recent landmark discoveries have been made in other organisms. For example, the interaction between DNA methylation and histone methylation was first described in the filamentous fungus Neurospora crassa. Another example is provided by the interaction between epigenetic modifications and the RNA interference (RNAi) machinery that was first reported in the fission yeast Schizosaccharomyces pombe. Another organism with great experimental power is the fruit fly Drosophila. Epigenetic regulation by chromatin has been extensively analyzed in the fly and several of the key components have been discovered in this organism. In this chapter, we will focus on three aspects that represent the complexity of epigenetic gene regulation. (1) We will discuss the available data about the DNA methylation system, (2) we will illuminate the interaction between DNA methylation and chromatin regulation, and (3) we will provide an overview over the Polycomb system of epigenetic chromatin modifiers that has proved to be an important paradigm for a chromatin system regulating epigenetic programming.

Keywords

Epigenetic Regulation Dnmt2 Protein TrxG Protein Trithorax Group Protein Polycomb Group Complex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams MD, Celniker SE, Holt RA, Evans CA, Gocayne JD, Amanatides PG, Scherer SE, Li PW, Hoskins RA, Galle RF, George RA, Lewis SE, Richards S, Ashburner M, Henderson SN, Sutton GG, Wortman JR, Yandell MD, Zhang Q, Chen LX, Brandon RC, Rogers YH, Blazej RG, Champe M, Pfeiffer BD, Wan KH, Doyle C, Baxter EG, Helt G, Nelson CR, Gabor GL, Abril JF, Agbayani A, An HJ, Andrews-Pfannkoch C, Baldwin D, Ballew RM, Basu A, Baxendale J, Bayraktaroglu L, Beasley EM, Beeson KY, Benos PV, Berman BP, Bhandari D, Bolshakov S, Borkova D, Botchan MR, Bouck J, Brokstein P, Brottier P, Burtis KC, Busam DA, Butler H, Cadieu E, Center A, Chandra I, Cherry JM, Cawley S, Dahlke C, Davenport LB, Davies P, de Pablos B, Delcher A, Deng Z, Mays AD, Dew I, Dietz SM, Dodson K, Doup LE, Downes M, Dugan-Rocha S, Dunkov BC, Dunn P, Durbin KJ, Evangelista CC, Ferraz C, Ferriera S, Fleischmann W, Fosler C, Gabrielian AE, Garg NS, Gelbart WM, Glasser K, Glodek A, Gong F, Gorrell JH, Gu Z, Guan P, Harris M, Harris NL, Harvey D, Heiman TJ, Hernandez JR, Houck J, Hostin D, Houston KA, Howland TJ, Wei MH, Ibegwam C, et al (2000) The genome sequence of Drosophila melanogaster. Science 287:2185–2195PubMedCrossRefGoogle Scholar
  2. Amir RE, Van den Veyver IB, Wan M, Tran CQ, Francke U, Zoghbi HY (1999) Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet 23:185–188PubMedCrossRefGoogle Scholar
  3. Ballestar E, Pile LA, Wassarman DA, Wolffe AP, Wade PA (2001) A Drosophila MBD family member is a transcriptional corepressor associated with specific genes. Eur J Biochem 268:5397–5406PubMedCrossRefGoogle Scholar
  4. Beisel C, Imhof A, Greene J, Kremmer E, Sauer F (2002) Histone methylation by the Drosophila epigenetic transcriptional regulator Ash1. Nature 419:857–862PubMedCrossRefGoogle Scholar
  5. Bird AP (1995) Gene number, noise reduction and biological complexity. Trends Genet 11:94–100PubMedCrossRefGoogle Scholar
  6. Bird AP, Taggart MH (1980) Variable patterns of total DNA and rDNA methylation in animals. Nucleic Acids Res 8:1485–1497PubMedGoogle Scholar
  7. Blower MD, Sullivan BA, Karpen GH (2002) Conserved organization of centromeric chromatin in flies and humans. Dev Cell 2:319–330PubMedCrossRefGoogle Scholar
  8. Breiling A, Turner BM, Bianchi ME, Orlando V (2001) General transcription factors bind promoters repressed by Polycomb group proteins. Nature 412:651–655PubMedCrossRefGoogle Scholar
  9. Cao R, Wang L, Wang H, Xia L, Erdjument-Bromage H, Tempst P, Jones RS, Zhang Y (2002) Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science 298:1039–1043PubMedCrossRefGoogle Scholar
  10. Carrington EA, Jones RS (1996) The Drosophila Enhancer of zeste gene encodes a chromosomal protein: examination of wild-type and mutant protein distribution. Development 122:4073–4083PubMedGoogle Scholar
  11. Cavalli G, Paro R (1999) Epigenetic inheritance of active chromatin after removal of the main transactivator. Science 286:955–958PubMedCrossRefGoogle Scholar
  12. Chang YL, Peng YH, Pan IC, Sun DS, King B, Huang DH (2001) Essential role of Drosophila Hdac1 in homeotic gene silencing. Proc Natl Acad Sci U S A 98:9730–9735PubMedCrossRefGoogle Scholar
  13. Crosby MA, Miller C, Alon T, Watson KL, Verrijzer CP, Goldman-Levi R, Zak NB (1999) The trithorax group gene moira encodes a brahma-associated putative chromatin-remodeling factor in Drosophila melanogaster. Mol Cell Biol 19:1159–1170PubMedGoogle Scholar
  14. Czermin B, Melfi R, McCabe D, Seitz V, Imhof A, Pirrotta V (2002) Drosophila enhancer of Zeste/ESC complexes have a histone H3 methyltransferase activity that marks chromosomal Polycomb sites. Cell 111:185–196PubMedCrossRefGoogle Scholar
  15. Dejardin J, Cavalli G (2004) Chromatin inheritance upon Zeste-mediated Brahma recruitment at a minimal cellular memory module. EMBO J 23:857–868PubMedCrossRefGoogle Scholar
  16. Dong A, Yoder JA, Zhang X, Zhou L, Bestor TH, Cheng X (2001) Structure of human DNMT2, an enigmatic DNA methyltransferase homolog that displays denaturant-resistant binding to DNA. Nucleic Acids Res 29:439–448PubMedCrossRefGoogle Scholar
  17. Ekwall K, Olsson T, Turner BM, Cranston G, Allshire RC (1997) Transient inhibition of histone deacetylation alters the structural and functional imprint at fission yeast centromeres. Cell 91:1021–1032PubMedCrossRefGoogle Scholar
  18. Field LM, Lyko F, Mandrioli M, Prantera G (2004) DNA methylation in insects. Insect Mol Biol 13:109–115PubMedCrossRefGoogle Scholar
  19. Fischle W, Wang Y, Jacobs SA, Kim Y, Allis CD, Khorasanizadeh S (2003) Molecular basis for the discrimination of repressive methyl-lysine marks in histone H3 by Polycomb and HP1 chromodomains. Genes Dev 17:1870–1881PubMedCrossRefGoogle Scholar
  20. Fisher O, Siman-Tov R, Ankri S (2004) Characterization of cytosine methylated regions and 5-cytosine DNAmethyltransferase (Ehmeth) in the protozoan parasite Entamoeba histolytica. Nucleic Acids Res 32:287–297PubMedCrossRefGoogle Scholar
  21. Francis NJ, Saurin AJ, Shao Z, Kingston RE (2001) Reconstitution of a functional core polycomb repressive complex. Mol Cell 8:545–556PubMedCrossRefGoogle Scholar
  22. Francis NJ, Kingston RE, Woodcock CL (2004) Chromatin compaction by a polycomb group protein complex. Science 306:1574–1577PubMedCrossRefGoogle Scholar
  23. Furuyama T, Tie F, Harte PJ (2003) Polycomb group proteins ESC and E(Z) are present in multiple distinct complexes that undergo dynamic changes during development. Genesis 35:114–124PubMedCrossRefGoogle Scholar
  24. Furuyama T, Banerjee R, Breen TR, Harte PJ (2004) SIR2 is required for polycomb silencing and is associated with an E(Z) histone methyltransferase complex. Curr Biol 14:1812–1821PubMedCrossRefGoogle Scholar
  25. Gowher H, Leismann O, Jeltsch A (2000) DNA of Drosophila melanogaster contains 5-methylcytosine. EMBO J 19:6918–6923PubMedCrossRefGoogle Scholar
  26. Hendrich B, Tweedie S (2003) The methyl-CpG binding domain and the evolving role of DNA methylation in animals. Trends Genet 19:269–277PubMedCrossRefGoogle Scholar
  27. Hendrich B, Guy J, Ramsahoye B, Wilson VA, Bird A (2001) Closely related proteins MBD2 and MBD3 play distinctive but interacting roles in mouse development. Genes Dev 15:710–723PubMedCrossRefGoogle Scholar
  28. Hermann A, Schmitt S, Jeltsch A (2003) The human Dnmt2 has residual DNA-(cytosine-C5) methyltransferase activity. J Biol Chem 278:31717–31721PubMedCrossRefGoogle Scholar
  29. Huang DH, Chang YL (2004) Isolation and characterization of CHRASCH, a polycomb-containing silencing complex. Methods Enzymol 377:267–282PubMedCrossRefGoogle Scholar
  30. Huang DH, Chang YL, Yang CC, Pan IC, King B (2002) pipsqueak encodes a factor essential for sequence-specific targeting of a polycomb group protein complex. Mol Cell Biol 22:6261–6271PubMedCrossRefGoogle Scholar
  31. Hung MS, Karthikeyan N, Huang B, Koo HC, Kiger J, Shen CJ (1999) Drosophila proteins related to vertebrate DNA (5-cytosine) methyltransferases. Proc Natl Acad Sci USA 96:11940–11945PubMedCrossRefGoogle Scholar
  32. Hur MW, Laney JD, Jeon SH, Ali J, Biggin MD (2002) Zeste maintains repression of Ubx transgenes: support for a new model of Polycomb repression. Development 129:1339–1343PubMedGoogle Scholar
  33. Jackson JP, Lindroth AM, Cao X, Jacobsen SE (2002) Control of CpNpG DNA methylation by the KRYPTONITE histone H3 methyltransferase. Nature 416:556–560PubMedCrossRefGoogle Scholar
  34. Jones PL, Veenstra GJ, Wade PA, Vermaak D, Kass SU, Landsberger N, Strouboulis J, Wolffe AP (1998) Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat Genet 19:187–191PubMedCrossRefGoogle Scholar
  35. Kal AJ, Mahmoudi T, Zak NB, Verrijzer CP (2000) The Drosophila brahma complex is an essential coactivator for the trithorax group protein zeste. Genes Dev 14:1058–1071PubMedGoogle Scholar
  36. Kehle J, Beuchle D, Treuheit S, Christen B, Kennison JA, Bienz M, Muller J (1998) dMi-2, a hunchback-interacting protein that functions in polycomb repression. Science 282:1897–1900PubMedCrossRefGoogle Scholar
  37. King IF, Francis NJ, Kingston RE (2002) Native and recombinant polycomb group complexes establish a selective block to template accessibility to repress transcription in vitro. Mol Cell Biol 22:7919–7928PubMedCrossRefGoogle Scholar
  38. Klymenko T, Muller J (2004) The histone methyltransferases Trithorax and Ash1 prevent transcriptional silencing by Polycomb group proteins. EMBO Rep 5:373–377PubMedCrossRefGoogle Scholar
  39. Kunert N, Marhold J, Stanke J, Stach D, Lyko F (2003) A Dnmt2-like protein mediates DNA methylation in Drosophila. Development 130:5083–5090PubMedCrossRefGoogle Scholar
  40. Kuzmichev A, Nishioka K, Erdjument-Bromage H, Tempst P, Reinberg D (2002) Histone methyltransferase activity associated with a human multiprotein complex containing the Enhancer of Zeste protein. Genes Dev 16:2893–2905PubMedCrossRefGoogle Scholar
  41. Kuzmichev A, Jenuwein T, Tempst P, Reinberg D (2004) Different EZH2-containing complexes target methylation of histone H1 or nucleosomal histone H3. Mol Cell 14:183–193PubMedCrossRefGoogle Scholar
  42. Lavigne M, Francis NJ, King IF, Kingston RE (2004) Propagation of silencing; recruitment and repression of naive chromatin in trans by polycomb repressed chromatin. Mol Cell 13:415–425PubMedCrossRefGoogle Scholar
  43. Levine SS, Weiss A, Erdjument-Bromage H, Shao Z, Tempst P, Kingston RE (2002) The core of the polycomb repressive complex is compositionally and functionally conserved in flies and humans. Mol Cell Biol 22:6070–6078PubMedCrossRefGoogle Scholar
  44. Levine SS, King IF, Kingston RE (2004) Division of labor in polycomb group repression. Trends Biochem Sci 29:478–485PubMedCrossRefGoogle Scholar
  45. Lyko F, Ramsahoye BH, Jaenisch R (2000a) DNA methylation in Drosophila melanogaster. Nature 408:538–540PubMedCrossRefGoogle Scholar
  46. Lyko F, Whittaker AJ, Orr-Weaver TL, Jaenisch R (2000b) The putative Drosophila methyltransferase gene dDnmt2 is contained in a transposon-like element and is expressed specifically in ovaries. Mech Dev 95:215–217PubMedCrossRefGoogle Scholar
  47. Mannervik M, Levine M (1999) The Rpd3 histone deacetylase is required for segmentation of the Drosophila embryo. Proc Natl Acad Sci U S A 96:6797–6801PubMedCrossRefGoogle Scholar
  48. Marhold J, Zbylut M, Lankenau DH, Li M, Gerlich D, Ballestar E, Mechler BM, Lyko F (2002) Stage-specific chromosomal association of Drosophila dMBD2/3 during genome activation. Chromosoma 111:13–21PubMedCrossRefGoogle Scholar
  49. Marhold J, Brehm A, Kramer K (2004a) The Drosophila methyl-DNA binding protein MBD2/3 interacts with the NuRD complex via p55 and MI-2. BMC Mol Biol 5:20PubMedCrossRefGoogle Scholar
  50. Marhold J, Kramer K, Kremmer E, Lyko F (2004b) The Drosophila MBD2/3 protein mediates interactions between the MI-2 chromatin complex and CpT/A-methylated DNA. Development 131:6033–6039PubMedCrossRefGoogle Scholar
  51. Marhold J, Rothe N, Pauli A, Mund C, Kuehle K, Brueckner B, Lyko F (2004c) Conservation of DNA methylation in dipteran insects. Insect Mol Biol 13:117–123PubMedCrossRefGoogle Scholar
  52. Marmorstein R, Roth SY (2001) Histone acetyltransferases: function, structure, and catalysis. Curr Opin Genet Dev 11:155–161PubMedCrossRefGoogle Scholar
  53. Martinez-Balbas MA, Tsukiyama T, Gdula D, Wu C (1998) Drosophila NURF-55, a WD repeat protein involved in histone metabolism. Proc Natl Acad Sci U S A 95:132–137PubMedCrossRefGoogle Scholar
  54. Mulholland NM, King IF, Kingston RE (2003) Regulation of Polycomb group complexes by the sequence-specific DNA binding proteins Zeste and GAGA. Genes Dev 17:2741–2746PubMedCrossRefGoogle Scholar
  55. Muller J, Hart CM, Francis NJ, Vargas ML, Sengupta A, Wild B, Miller EL, O’Connor MB, Kingston RE, Simon JA (2002) Histone methyltransferase activity of a Drosophila Polycomb group repressor complex. Cell 111:197–208PubMedCrossRefGoogle Scholar
  56. Mund C, Musch T, Strodicke M, Assmann B, Li E, Lyko F (2004) Comparative analysis of DNA methylation patterns in transgenic Drosophila overexpressing mouse DNA methyltransferases. Biochem J 378:763–768PubMedCrossRefGoogle Scholar
  57. Muyrers-Chen I, Paro R (2001) Epigenetics: unforeseen regulators in cancer. Biochim Biophys Acta 1552:15–26PubMedGoogle Scholar
  58. Nan X, Ng HH, Johnson CA, Laherty CD, Turner BM, Eisenman RN, Bird A (1998) Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 393:386–389PubMedCrossRefGoogle Scholar
  59. Ng HH, Zhang Y, Hendrich B, Johnson CA, Turner BM, Erdjument-Bromage H, Tempst P, Reinberg D, Bird A (1999) MBD2 is a transcriptional repressor belonging to the MeCP1 histone deacetylase complex. Nat Genet 23:58–61PubMedGoogle Scholar
  60. Okano M, Xie S, Li E (1998) Dnmt2 is not required for de novo and maintenance methylation of viral DNA in embryonic stem cells. Nucleic Acids Res 26:2536–2540PubMedCrossRefGoogle Scholar
  61. Orlando V, Jane EP, Chinwalla V, Harte PJ, Paro R (1998) Binding of trithorax and Polycomb proteins to the bithorax complex: dynamic changes during early Drosophila embryogenesis. EMBO J 17:5141–5150PubMedCrossRefGoogle Scholar
  62. Otte AP, Kwaks TH (2003) Gene repression by Polycomb group protein complexes: a distinct complex for every occasion? Curr Opin Genet Dev 13:448–454PubMedCrossRefGoogle Scholar
  63. Papoulas O, Beek SJ, Moseley SL, McCallum CM, Sarte M, Shearn A, Tamkun JW (1998) The Drosophila trithorax group proteins BRM, ASH1 and ASH2 are subunits of distinct protein complexes. Development 125:3955–3966PubMedGoogle Scholar
  64. Patel CV, Gopinathan KP (1987) Determination of trace amounts of 5-ethylcytosine in DNA by reverse-phase high-performance liquid chromatography. Anal Biochem 164:164–169PubMedCrossRefGoogle Scholar
  65. Peters AH, O’Carroll D, Scherthan H, Mechtler K, Sauer S, Schofer C, Weipoltshammer K, Pagani M, Lachner M, Kohlmaier A, Opravil S, Doyle M, Sibilia M, Jenuwein T (2001) Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell 107:323–337PubMedCrossRefGoogle Scholar
  66. Petruk S, Sedkov Y, Smith S, Tillib S, Kraevski V, Nakamura T, Canaani E, Croce CM, Mazo A (2001) Trithorax and dCBP acting in a complex to maintain expression of a homeotic gene. Science 294:1331–1334PubMedCrossRefGoogle Scholar
  67. Pinarbasi E, Elliott J, Hornby DP (1996) Activation of a yeast pseudo DNA methyltransferase by deletion of a single amino acid. J Mol Biol 257:804–813PubMedCrossRefGoogle Scholar
  68. Poux S, Melfi R, Pirrotta V (2001) Establishment of Polycomb silencing requires a transient interaction between PC and ESC. Genes Dev 15:2509–2514PubMedCrossRefGoogle Scholar
  69. Rae PM, Steele RE (1979) Absence of cytosine methylation at C-C-G-G and G-C-G-C sites in the rDNA coding regions and intervening sequences of Drosophila and the rDNA of other insects. Nucleic Acids Res 6:2987–2995PubMedGoogle Scholar
  70. Rastelli L, Chan CS, Pirrotta V (1993) Related chromosome binding sites for zeste, suppressors of zeste and Polycomb group proteins in Drosophila and their dependence on Enhancer of zeste function. EMBO J 12:1513–1522PubMedGoogle Scholar
  71. Ringrose L, Paro R (2004) Epigenetic regulation of cellular memory by the polycomb and trithorax group proteins. Annu Rev Genet 38:413–443PubMedCrossRefGoogle Scholar
  72. Ringrose L, Rehmsmeier M, Dura JM, Paro R (2003) Genome-wide prediction of Polycomb/Trithorax response elements in Drosophila melanogaster. Dev Cell 5:759–771PubMedCrossRefGoogle Scholar
  73. Ringrose L, Ehret H, Paro R (2004) Distinct contributions of histone H3 lysine 9 and 27 methylation to locus-specific stability of polycomb complexes. Mol Cell 16:641–653PubMedCrossRefGoogle Scholar
  74. Roder K, Hung MS, Lee TL, Lin TY, Xiao H, Isobe KI, Juang JL, Shen CJ (2000) Transcriptional repression by Drosophila methyl-CpG-binding proteins. Mol Cell Biol 20:7401–7409PubMedCrossRefGoogle Scholar
  75. Saurin AJ, Shao Z, Erdjument-Bromage H, Tempst P, Kingston RE (2001) A Drosophila Polycomb group complex includes Zeste and dTAFII proteins. Nature 412:655–660PubMedCrossRefGoogle Scholar
  76. Schotta G, Ebert A, Krauss V, Fischer A, Hoffmann J, Rea S, Jenuwein T, Dorn R, Reuter G (2002) Central role of Drosophila SU(VAR)3–9 in histone H3-K9 methylation and heterochromatic gene silencing. EMBO J 21:1121–1131PubMedCrossRefGoogle Scholar
  77. Shao Z, Raible F, Mollaaghababa R, Guyon JR, Wu CT, Bender W, Kingston RE (1999) Stabilization of chromatin structure by PRC1, a Polycomb complex. Cell 98:37–46PubMedCrossRefGoogle Scholar
  78. Silva J, Mak W, Zvetkova I, Appanah R, Nesterova TB, Webster Z, Peters AH, Jenuwein T, Otte AP, Brockdorff N (2003) Establishment of histone h3 methylation on the inactive X chromosome requires transient recruitment of Eed-Enx1 polycomb group complexes. Dev Cell 4:481–495PubMedCrossRefGoogle Scholar
  79. Simon J, Bornemann D, Lunde K, Schwartz C (1995) The extra sex combs product contains WD40 repeats and its time of action implies a role distinct from other Polycomb group products. Mech Dev 53:197–208PubMedCrossRefGoogle Scholar
  80. Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403:41–45PubMedCrossRefGoogle Scholar
  81. Strutt H, Paro R (1997) The polycomb group protein complex of Drosophila melanogaster has different compositions at different target genes. Mol Cell Biol 17:6773–6783PubMedGoogle Scholar
  82. Tamaru H, Selker EU (2001) A histone H3 methyltransferase controls DNA methylation in Neurospora crassa. Nature 414:277–283PubMedCrossRefGoogle Scholar
  83. Tang LY, Reddy MN, Rasheva V, Lee TL, Lin MJ, Hung MS, Shen CK (2003) The eukaryotic DNMT2 genes encode a new class of cytosine-5 DNA methyltransferases. J Biol Chem 278:33613–33616PubMedCrossRefGoogle Scholar
  84. Tie F, Furuyama T, Prasad-Sinha J, Jane E, Harte PJ (2001) The Drosophila Polycomb group proteins ESC and E(Z) are present in a complex containing the histonebinding protein p55 and the histone deacetylase RPD3. Development 128:275–286PubMedGoogle Scholar
  85. Tie F, Prasad-Sinha J, Birve A, Rasmuson-Lestander A, Harte PJ (2003) A 1-megadalton ESC/E(Z) complex from Drosophila that contains polycomblike and RPD3. Mol Cell Biol 23:3352–3362PubMedCrossRefGoogle Scholar
  86. Tong JK, Hassig CA, Schnitzler GR, Kingston RE, Schreiber SL (1998) Chromatin deacetylation by an ATP-dependent nucleosome remodelling complex. Nature 395:917–921PubMedCrossRefGoogle Scholar
  87. Tschiersch B, Hofmann A, Krauss V, Dorn R, Korge G, Reuter G (1994) The protein encoded by the Drosophila position-effect variegation suppressor gene Su(var)3—9 combines domains of antagonistic regulators of homeotic gene complexes. EMBO J 13:3822–3831PubMedGoogle Scholar
  88. Turner BM (2002) Cellular memory and the histone code. Cell 111:285–291PubMedCrossRefGoogle Scholar
  89. Tweedie S, Ng HH, Barlow AL, Turner BM, Hendrich B, Bird A (1999) Vestiges of aDNA methylation system in Drosophila melanogaster? Nat Genet 23:389–390PubMedCrossRefGoogle Scholar
  90. Tyler JK, Bulger M, Kamakaka RT, Kobayashi R, Kadonaga JT (1996) The p55 subunit of Drosophila chromatin assembly factor 1 is homologous to a histone deacetylaseassociated protein. Mol Cell Biol 16:6149–6159PubMedGoogle Scholar
  91. Urieli-Shoval S, Gruenbaum Y, Sedat J, Razin A (1982) The absence of detectable methylated bases in Drosophila melanogaster DNA. FEBS Lett 146:148–152PubMedCrossRefGoogle Scholar
  92. Valk-Lingbeek ME, Bruggeman SW, van Lohuizen M(2004) Stem cells and cancer; the polycomb connection. Cell 118:409–418PubMedCrossRefGoogle Scholar
  93. van der Vlag J, Otte AP (1999) Transcriptional repression mediated by the human polycomb-group protein EED involves histone deacetylation. Nat Genet 23:474–478PubMedCrossRefGoogle Scholar
  94. Vazquez M, Moore L, Kennison JA (1999) The trithorax group gene osa encodes an ARID-domain protein that genetically interacts with the brahma chromatin-remodeling factor to regulate transcription. Development 126:733–742PubMedGoogle Scholar
  95. Wade PA, Gegonne A, Jones PL, Ballestar E, Aubry F, Wolffe AP (1999) Mi-2 complex couples DNA methylation to chromatin remodelling and histone deacetylation. Nat Genet 23:62–66PubMedGoogle Scholar
  96. Wang H, Wang L, Erdjument-Bromage H, Vidal M, Tempst P, Jones RS, Zhang Y (2004) Role of histone H2A ubiquitination in Polycomb silencing. Nature 431:873–878PubMedCrossRefGoogle Scholar
  97. Weissmann F, Lyko F (2003) Cooperative interactions between epigenetic modifications and their function in the regulation of chromosome architecture. Bioessays 25:792–797PubMedCrossRefGoogle Scholar
  98. Weissmann F, Muyrers-Chen I, Musch T, Stach D, Wiessler M, Paro R, Lyko F (2003) DNA hypermethylation in Drosophila melanogaster causes irregular chromosome condensation and dysregulation of epigenetic histone modifications. Mol Cell Biol 23:2577–2586PubMedCrossRefGoogle Scholar
  99. Wilkinson CR, Bartlett R, Nurse P, Bird AP (1995) The fission yeast gene pmt1+ encodes a DNA methyltransferase homologue. Nucleic Acids Res 23:203–210PubMedGoogle Scholar
  100. Zhang Y, Ng HH, Erdjument-Bromage H, Tempst P, Bird A, Reinberg D (1999) Analysis of the NuRD subunits reveals a histone deacetylase core complex and a connection with DNA methylation. Genes Dev 13:1924–1935PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  1. 1.Division of EpigeneticsDeutsches KrebsforschungszentrumHeidelbergGermany
  2. 2.ZMBHUniversity of HeidelbergHeidelbergGermany

Personalised recommendations