Skip to main content

Biology of Tobacco and Smoking

  • Chapter
Tumors of the Chest

3.6 Concluding Remarks

Carcinogens have clearly shown to be present in cigarette smoke. Their activation to highly reactive metabolites contributes to the potential insults to DNA, RNA, and proteins- altering a system of “gatekeepers and caretakers” and permitting cells to transform into clones that develop into a neoplasm. Alterations in the detoxification and repair capacity pathways contribute to the perpetuation of DNA damage to linger and burden the system. Further studies are needed to link carcinogens to their full responsibility in tumorigenesis in relation to tobacco. However, there is little doubt that they play an important role in the process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. US Department of Health, Education and Welfare, Smoking and Health. Report of the Advisory Committee to the Surgeon General of the Public Health Service. Washington: US Dept of HEW, Public Health Service, 1964. PHS Publ. No. 1103.

    Google Scholar 

  2. Doll R, Peto R, Wheatley K, Gray R, Sutherland I. Mortality in relation to smoking: 40 years’ observations on male British doctors. BMJ 1994; 309:901.

    PubMed  CAS  Google Scholar 

  3. Haldorsen T, Grimsrud TK. Cohort analysis of cigarette smoking and lung cancer incidence among Norwegian women. Int J Epidemiol 1999; 28:1032.

    Article  PubMed  CAS  Google Scholar 

  4. Lubin JH, Blot WJ. Assessment of lung cancer risk factors by histologic category. J Natl Cancer Inst 1984; 73:383.

    PubMed  CAS  Google Scholar 

  5. Harris JE, Thun MJ, Mondul AM, Calle EE. Cigarette taryields in relation to mortality from lung cancer in the cancer prevention study II prospective cohort, 1982–8. BMJ 2004; 328:72.

    Article  PubMed  Google Scholar 

  6. Sasco AJ, Secretan MB, Straif K. Tobacco smoking and cancer: a brief review of recent epidemiological evidence. Lung Cancer 2004; 45(Suppl 2):S3.

    Article  PubMed  Google Scholar 

  7. Hecht SS. Tobacco smoke carcinogens and lung cancer. J Natl Cancer Inst 1999; 91:1194.

    Article  PubMed  CAS  Google Scholar 

  8. International Agency for Research on Cancer. Overall Evaluations of Carcinogenicity. http://www-cie.iarc.fr (accessed August 29, 2005).

    Google Scholar 

  9. US Department of Health and Human Services. Reducing the health consequences of smoking: 25 years of progress. A report of the Surgeon General. USDHHS, Public Health Service, Centers for disease control, Center for chronic disease prevention and health promotion, Office on smoking and health. 1989, DHHS Pub No. (CDC) 89-8411.

    Google Scholar 

  10. Physicians for a Smoke-Free Canada. Tobacco smoke components: carcinogens. 1999. www.smoke-free.ca/factsheet (accessed August 10, 2005).

    Google Scholar 

  11. Hoffmann D, Hoffmann I. The changing cigarette, 1950–1995. J Toxicol Environ Health 1997; 50:307.

    Article  PubMed  CAS  Google Scholar 

  12. Hoffmann D, Hecht SS. Advances in tobacco carcinogenesis. In: Cooper CS, Grover PL (eds), Handbook of Experimental Pharmacology. Springer-Verlag, Heidelberg, Germany, 1990; 94/I:63.

    Google Scholar 

  13. Smith CJ, Perfetti TA, Garg R, Hansch C. IARC carcinogens reported in cigarette mainstream smoke and their calculated log P values. Food Chem Toxicol 2003; 41:807.

    Article  PubMed  CAS  Google Scholar 

  14. International Agency for Research on Cancer. Tobacco smoking. In: IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans. IARC, Lyon, France, 1986; p 38.

    Google Scholar 

  15. California Environmental Protection Agency. Health effects of exposure to environmental tobacco smoke. Office of Environmental Health Hazard Assessment, 1997.

    Google Scholar 

  16. National Research Council. Environmental tobacco smoke. Measuring exposures and assessing health effects. Board on environmental studies and toxicology, committee on passive smoking. National Academy Press, Washington DC, 1986.

    Google Scholar 

  17. Vineis P, Caporaso N. Tobacco and cancer: epidemiology and the laboratory. Environ Health Perspect 1995; 103:156.

    PubMed  CAS  Google Scholar 

  18. NTP. Substance Profiles:4-Aminobiphenyl, CAS No. 92-67-1. Report on Carcinogens, 11th Edition; U.S. Department of Health and Human Services, Public Health Service, National Toxicology Program, http://ntp.niehs.nih.gov (accessed August 29, 2005).

    Google Scholar 

  19. NTP. Substance Profiles: Benzene, CAS No. 71-43-2. Report on Carcinogens, 11th Edition; U.S. Department of Health and Human Services, Public Health Service, National Toxicology Program, http://ntp.niehs.nih.gov (accessed August 29, 2005).

    Google Scholar 

  20. NTP. Substance Profiles: Cadmium (CAS No. 7440-43-9) and cadmium compounds. Report on Carcinogens, 11th Edition; U.S. Department of Health and Human Services, Public Health Service, National Toxicology Program. http://ntp.niehs.nih.gov (accessed August 29, 2005).

    Google Scholar 

  21. Guerin MR, Jenkins RA, Tomkins BA. The Chemistry of Environmental Tobacco Smoke: Composition and Management. Lewis Publishers, Chelsea, MA, 1992.

    Google Scholar 

  22. Smith CJ, Livingston SD, Doolittle OJ. An international literature survey of “IARC group I carcinogens” reported in mainstream cigarette smoke. Food Chem Toxicol 1997;35:1107

    Article  PubMed  CAS  Google Scholar 

  23. Smith CJ, Perfetti TA, et al. IARC Group 2A carcinogens reported in cigarette mainstream smoke. Food Chem Toxicol 2000; 38:371.

    Article  PubMed  CAS  Google Scholar 

  24. NTP. Substance Profiles: 2-Naphthylamine CAS No. 91-59-8. Report on Carcinogens, 11th Edition; U.S. Department of Health and Human Services, Public Health Service, National Toxicology Program, http://ntp.niehs.nih.gov (accessed August 29, 2005).

    Google Scholar 

  25. NTP. Substance Profiles: 1,3-Butadiene, CAS No. 106-99-0. Report on Carcinogens, 11th Edition; U.S. Department of Health and Human Services, Public Health Service, National Toxicology Program, http://ntp.niehs.nih.gov (accessed August 29, 2005).

    Google Scholar 

  26. NTP. Substance Profiles: N-Nitrosodiethylamine, CAS No.55-18-5. Report on Carcinogens, 11th Edition; U.S. Department of Health and Human Services, Public Health Service, National Toxicology Program. http://ntp.niehs.-nih.gov (accessed August 29, 2005).

    Google Scholar 

  27. NTP. Substance Profiles: N-Nitrosodimethylamine, CAS No. 62-75-9. Report on Carcinogens, 11th Edition; U.S. Department of Health and Human Services, Public Health Service, National Toxicology Program. http://ntp.niehs.-nih.gov (accessed August 29, 2005).

    Google Scholar 

  28. NTP. Substance Profiles: Polycyclic aromatic hydrocarbons, 15 listings. Report on Carcinogens, Eleventh Edition; U.S. Department of Health and Human Services, Public Health Service, National Toxicology Program. http:llntp.niehs.nih.gov (accessed August 29, 2005).

    Google Scholar 

  29. NTP. Substance Profiles: Hydrazine and Hydrazine Sulfate CAS Nos. 302-01-2 and 10034-93-2. Report on Carcinogens, 11th Edition; U.S. Department of Health and Human Services, Public Health Service, National Toxicology Program, http://ntp.niehs.nih.gov (accessed August 29, 2005).

    Google Scholar 

  30. NTP. Substance Profiles: 4-(N-Nitrosomethylamino)-l-(3-pyridyl)-l-butanone, CAS No. 64091-91-4. Report on Carcinogens, 11th Edition; U.S. Department of Health and Human Services, Public Health Service, National Toxicology Program, http://ntp.niehs.nih.gov (accessed August 29, 2005).

    Google Scholar 

  31. NTP. Substance Profiles: Tobacco-related exposures: Report on Carcinogens, 11th Edition; U.S. Department of Health and Human Services, Public Health Service, National Toxicology Program, http://ntp.niehs.nih.gov (accessed August 29, 2005).

    Google Scholar 

  32. Blot WJ, McLaughlin JK. Passive smoking and lung cancer risk: what is the story now? [editorial]. J Natl Cancer Inst 1998; 90:1416.

    Article  PubMed  CAS  Google Scholar 

  33. International Agency for Research on Cancer. Certain polycyclic aromatic hydrocarbons and heterocyclic compounds. In: IARC Monographs on the Evaluation of Carcinogenic Risk of Chemicals to Man. IARC, Lyon, France, 1972; 3:45.

    Google Scholar 

  34. International Agency for Research on Cancer. Some polycyclic aromatic hydrocarbons and heterocyclic compounds. In: IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans. IARC, Lyon, France, 1973; 3:229, 249, 271.

    Google Scholar 

  35. International Agency for Research on Cancer. Polynuclear-aromatic amines, part 1. chemical, environmental and experimental data. In: IARC Monographs on the Evaluation of Carcinogenic Risk of Chemicals to Humans. IARC, Lyon, France, 1983; 32.

    Google Scholar 

  36. Deutsch-Wenzel RP, Brune H, Grimmer G, Dettbarn G, Misfeld J. Experimental studies in rat lungs on the carcinogenicity and dose-response relationships of eight frequently occurring environmental polycyclic aromatic hydrocarbons. J Natl Cancer Inst 1983; 71:539.

    PubMed  CAS  Google Scholar 

  37. Sellakumar A, Shubik P. Carcinogenicity of different polycyclic hydrocarbons in the respiratory tract of hamsters. J Natl Cancer Inst 1974; 53:1713.

    PubMed  CAS  Google Scholar 

  38. Nesnow S, Ross JA, Stoner GD, Mass MJ. Mechanistic linkage between DNA adducts, mutations in oncogenes and tumorigenesis of carcinogenic environmental polycyclic aromatic hydrocarbons in strain A/J mice. Toxicology 1995; 105:403.

    Article  PubMed  CAS  Google Scholar 

  39. Hecht SS, Hochalter JB, Villalta PW, Murphy SE. 2’-Hydroxylation of nicotine by cytochrome P450 2A6 and human liver microsomes: formation of a lung carcinogen precursor. Proc Natl Acad Sci U S A 2000; 97:12493.

    Article  PubMed  CAS  Google Scholar 

  40. Hecht SS. Biochemistry, biology, and carcinogenicity of tobacco-specific N-nitrosamines. Chem Res Toxicol 1998; 11:559.

    Article  PubMed  CAS  Google Scholar 

  41. International Agency for Research on Cancer. Some monomers, plastics, and synthetic elastomers, and acrolein. In: IARC Monographs on the Evaluation of Carcinogenic Risk of Chemicals to Humans. IARC, Lyon, France, 1979; 19:513.

    Google Scholar 

  42. Feng Z, Hu W, Rom WN, et al. 4-aminobiphenyl is a major etiological agent of human bladder cancer: evidence from its DNA binding spectrum in human p53 gene. Carcinogenesis 2002; 23:1721.

    Article  PubMed  CAS  Google Scholar 

  43. Vineis P. Epidemiology from exposure to arylamines. Environ Health Perspect 1994; 102(Suppl 6):7.

    PubMed  Google Scholar 

  44. Oberdorster G, Cherian MG, Baggs RB. Importance of species differences in experimental pulmonary carcinogenicity of inhaled cadmium for extrapolation to humans. Toxicol Lett 1994; 72:339.

    Article  PubMed  CAS  Google Scholar 

  45. International Agency for Research on Cancer. Occupational exposures to mists and vapours from strong inorganic acids; and some other industrial chemicals. In: IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans. IARC, Lyon, France, 1992; 54:237.

    Google Scholar 

  46. NTP. Substance Profiles: Chromium Hexavalent Compounds. Report on Carcinogens, 11th Edition; U.S. Department of Health and Human Services, Public Health Service, National Toxicology Program. http:llntp.niehs.-nih.gov (accessed August 29, 2005).

    Google Scholar 

  47. International Agency for Research on Cancer. Chromium, nickel and welding. In: IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans. IARC, Lyon, France, 1990; 49:677.

    Google Scholar 

  48. International Agency for Research on Cancer. Some antithyroid and related substances, nitrofurans and industrial chemicals. In: IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Man. IARC, Lyon, France, 1974; 7:111.

    Google Scholar 

  49. NTP. Substance Profiles: Formaldehyde (gas), CAS No. 50-00-0. Report on Carcinogens, 11th Edition; U.S. Department of Health and Human Services, Public Health Ser vice, National Toxicology Program, http://ntp.niehs.nih.gov (accessed August 29, 2005).

    Google Scholar 

  50. Yu, MC, Skipper PL, Tannenbaum SR, et al. Arylamine exposures and bladder cancer risk. Mutat Res 2002; 506–507:21.

    PubMed  Google Scholar 

  51. NTP. Toxicology and carcinogenesis studies of nickel oxide (CAS No. 1313-99-1) in F344 rats and B6C3F1 mice (inhalation studies). Technical Report Series No 451. Research Triangle Park, NC: National Toxicology Program. 1996a; 381.

    Google Scholar 

  52. NTP. Toxicology and carcinogenesis studies of nickel sub-sulfide (CAS No. 12035-72-2) in F344 rats and B6C3F1 mice (inhalation studies). Technical Report Series No 453. Research Triangle Park, NC: National Toxicology Program. 1996b; 365.

    Google Scholar 

  53. International Agency for Research on Cancer. Vinyl chloride. Overall Evaluations of Carcinogenicity. In: IARC 37. Monographs on the Evaluation of Carcinogenic Risk of Chemicals to Humans, Supplement 7. IARC, Lyon, France, 1987; Suppl 7:440.

    Google Scholar 

  54. NTP. Substance Profiles: Vinyl chloride, CAS No. 75-01-4. Report on Carcinogens, 11th Edition; U.S. Department of Health and Human Services, Public Health Service, National Toxicology Program, http://ntp.niehs.nih.gov (accessed August 29, 2005).

    Google Scholar 

  55. Kielhorn J, Melber C, Wahnschaffe U, et al. Vinyl chloride: still a cause for concern. Environ Health Perspect 2000; 108:579.

    PubMed  CAS  Google Scholar 

  56. Battista SP. Ciliatoxic components of cigarette smoke. In: Wynder EL, Hoffman D, Gori GB (eds), Smoking and Health I Measurement in the Analysis and Treatment of Smoking Behavior. US Government Printing Office, Washington DC, 1973.

    Google Scholar 

  57. Hecht SS. Carcinogenic effects of cigarette smoke on the respiratory tract. In: Roth RA (ed) Comprehensive Toxicology: Toxicology of the Respiratory System. Elsevier Science, Oxford UK, 1997; 8:437.

    Google Scholar 

  58. Hecht SS. Tobacco carcinogens, their biomarkers and to bacco-induced cancer. Nat Rev Cancer 2003; 3:733.

    Article  PubMed  CAS  Google Scholar 

  59. Rao Y, Hoffmann E, Zia M et al. Duplications and defects in the CYP2A6 gene: identification, genotyping, and in vivo effects on smoking. Mol Pharmacol 2000 Oct; 58:747.

    PubMed  CAS  Google Scholar 

  60. Berembaum, I Subik P. A new, quantitative approach to the study of the stages of chemical carcinogenesis in the mouse’s skin. Br J Cancer 1947; 1:383.

    Google Scholar 

  61. Farber E. The multistep nature of cancer development. Cancer Res 1984; 44:4217.

    PubMed  CAS  Google Scholar 

  62. Cooper, G. Role of oncogenes and tumor suppressor genes in the pathogenesis of neoplasms. In: Oncogenes. Jones and Bartlett Publishers, Boston, 1995.

    Google Scholar 

  63. Garte S, Zocchetti C, Taioli E. Gene-environment interactions in the application of biomarkers of cancer susceptibility in epidemiology. In: Toniolo P, Boffetta P, et al. (eds) Application of Biomarkers in Cancer Epidemiology. IARC, Lyon, France, 1997; 251.

    Google Scholar 

  64. d’Errico A, Malats N, Vineis P, Boffetta P. Review of studies of selected metabolic polymorphisms and cancer. IARC Scientific Publications 1999; (148):323.

    CAS  Google Scholar 

  65. Marcus PM, Hayes RB, et al. Cigarette smoking, N-acetyl-transferase 2 acetylation status, and bladder cancer risk: a case-series meta analysis of a gene-environment interacttion. Cancer Epidemiol Biomarkers Prev 2000; 9:461.

    PubMed  CAS  Google Scholar 

  66. Marcus PM, Vineis P, Rothman N. NAT2 slow acetylation and bladder cancer risk: a meta-analysis of 22 case-control studies conducted in the general population. Pharma-cogenetics 2000; 10:115.

    CAS  Google Scholar 

  67. Benhamou S, et al. Meta-and pooled analyses of the effects of glutathione S-transferase M1 polymorphisms and smoking on lung cancer risk. Carcinogenesis 2002; 23:1343.

    Article  PubMed  CAS  Google Scholar 

  68. Vineis P, Veglia F, et al. CYP1A1 T3801 C polymorphism and lung cancer: a pooled analysis of 2,451 cases and 3,358 controls. Int J Cancer 2003; 104:650.

    Article  PubMed  CAS  Google Scholar 

  69. International Agency for Research on Cancer. Tobacco Smoke. Overall Evaluations of Carcinogenicity In: IARC Monographs on the Evaluation of Carcinogenic Risk of Chemicals to Humans, Supplement 7. IARC, Lyon, France, 1987; Suppl 7:359.

    Google Scholar 

  70. International Agency for Research on Cancer. Cancer incidence in five continents. IARC, Lyon, France, 1992; 6.

    Google Scholar 

  71. Schulte PA, Perera FP (eds). Molecular Epidemiology: Principles and Practices. Academic Press, New York, 1993; 4.

    Google Scholar 

  72. International Agency for Research on Cancer. Tobacco smoke and involuntary smoking. In: IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. IARC, Lyon, France, 2002; 83.

    Google Scholar 

  73. Harlow E. An introduction to the puzzle. Cold Spring Harbor Symposia on Quantitative Biology 1994; 59:709.

    Google Scholar 

  74. Shields PG, Harris CC. Cancer risk and low-penetrance susceptibility genes in gene-environment interactions. J Clin Oncol 2000; 18:2309.

    PubMed  CAS  Google Scholar 

  75. Vogelstein B, Kinzler KW (eds). The Genetic Basis of Human Cancer. McGraw-Hill, New York, 1998.

    Google Scholar 

  76. Levitt NC, Hickson ID. Caretaker tumour suppressor genes that defend genome integrity. Trends Mol Med, 2002; 8:179.

    Article  PubMed  CAS  Google Scholar 

  77. Oesch F, Aulmann W, Platt KL, Doerjer G. Individual differences in DNA repair capacities in man. Arch Toxicol Suppl 1987; 10:172.

    PubMed  CAS  Google Scholar 

  78. Cheng L, Spitz MR, Hong WK, Wei Q. Reduced expression levels of nucleotide excision repair genes in lung cancer: a case-control analysis. Carcinogenesis 2000; 21:1527.

    Article  PubMed  CAS  Google Scholar 

  79. He XY, Shen J, Ding X, Lu AY, Hong JY. Identification of critical amino acid residues of human CYP2A13 for the metabolic activation of 4-(methylnitrosamino)-1-(3-pyri-dyl)-1-butanone, a tobacco-specific carcinogen. Drug Me-tab Dispos 2004; 32:1516.

    Article  CAS  Google Scholar 

  80. Nishikawa A, Mori Y, Lee IS, et al. Cigarette smoking, metabolic activation and carcinogenesis. Curr Drug Metab 2004; 5:363 (review).

    Article  PubMed  CAS  Google Scholar 

  81. Su T, Bao Z, Zhang QT, et al. Human cytochrome P450 CYP2A13: predominant expression in the respiratory tract and its high efficiency metabolic activation of a tobacco-specific carcinogen, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone. Cancer Res 2000; 60:5074.

    PubMed  CAS  Google Scholar 

  82. Wang H, Tan W, Bingtao Hao B, et al. Substantial reduction in risk of lung adenocarcinoma associated with genetic polymorphism in CYP2A13, the most active cytochrome p450 for the metabolic activation of tobacco-specific carcinogen NNK. Cancer Res 2003; 63:8057.

    PubMed  CAS  Google Scholar 

  83. Jalas JR, Seetharaman M, Hecht SS, Murphy SE. Molecular modelling of CYP2A enzymes: application to metabolism of the tobacco-specific nitrosamine 4-(methylnitrosami-no)-1-(3-pyridyl)-1-butanone (NNK). Xenobiotica 2004; 34:515.

    Article  PubMed  CAS  Google Scholar 

  84. Ziegel R, Shallop A, Jones R, Tretyakova N. K-ras gene sequence effects on the formation of 4-(methylnitrosami-no)-1-(3-pyridyl)-1-butanone (NNK)-DNA adducts. Chem Res Toxicol 2003; 16:541.

    Article  PubMed  CAS  Google Scholar 

  85. Hecht SS, Villalta PW, Sturla SJ, et al. Identification of O2-substituted pyrimidine adducts formed in reactions of 4-(acetoxymethylnitrosamino)-1-(3-pyridyl)-1-butanone and 4-(acetoxymethylnitros-amino)-1-(3-pyridyl)-1-butanol with DNA. Chem Res Toxicol 2004; 17:588.

    Article  PubMed  CAS  Google Scholar 

  86. Wang M, Cheng G, Sturla SJ, et al. Identification of adducts formed by pyridyloxobutylation of deoxyguanosine and DNA by 4-(acetoxymethylnitrosamino)-1-(3-pyridyl)-1-butanone, a chemically activated form of tobacco specific carcinogens. Chem Res Toxicol 2003; 16:616.

    Article  PubMed  CAS  Google Scholar 

  87. Sturla SJ, Scott J, Lao Y, et al. Mass spectrometric analysis of relative levels of pyridyloxobutylation adducts formed in the reaction of DNA with a chemically activated form of the tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone. Chem Res Toxicol 2005; 18:1048.

    Article  PubMed  CAS  Google Scholar 

  88. Rioux N, Castonguay A. The induction of cyclooxygenase-1 by a tobacco carcinogen in U937 human macrophages is correlated to the activation of NF-B. Carcinogenesis 2000; 21:1745.

    Article  PubMed  CAS  Google Scholar 

  89. Schuller, HM, Tithof PK, Williams M, Plummer H 3rd. The tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone is a beta-adrenergic agonist and stimulates DNA synthesis in lung adenocarcinoma via beta-adrenergic receptor-mediated release of arachidonic acid. Cancer Res 1999; 59:4510.

    PubMed  CAS  Google Scholar 

  90. Wu WK, Wong HP, Luo SW, et al. 4-(Methylnitrosami-no)-1-(3-pyridyl)-1-butanone from cigarette smoke stimulates colon cancer growth via beta-adrenoceptors. Cancer Res 2005; 65:5272.

    Article  PubMed  CAS  Google Scholar 

  91. Tsurutani J, Castillo SS, Brognard J, et al. Tobacco components stimulate Akt-dependent proliferation and NFkappaB-dependent survival in lung cancer cells. Carcinogenesis 2005; 26:1182.

    Article  PubMed  CAS  Google Scholar 

  92. Plummer HK 3rd, Dhar M, Schuller HM. Expression of the alpha7 nicotinic acetylcholine receptor in human lung cells. Respir Res 2005; 6:29.

    Article  PubMed  CAS  Google Scholar 

  93. Jull BA, Plummer HK, Schuller HM. Nicotinic receptor-mediated activation by the tobacco-specific nitrosamine NNK of the Raf-1/MAP kinase pathway, resulting in phosphorylation of the c-myc in human small cell lung carcinoma cells and the pulmonary neuroendocrine cells. J Cancer Res Clin Oncol 2001; 127:707.

    PubMed  CAS  Google Scholar 

  94. West KA, Brognard J, Clark AS et al. Rapid Akt activation by nicotine and a tobacco carcinogen modulates the phenotype of normal human airway epithelial cells. J Clin Invest 2003; 111:81.

    Article  PubMed  CAS  Google Scholar 

  95. West KA, Linnoila IR, Belinsky SA. Tobacco carcinogen-induced cellular transformation increases activation of the phosphatidylinositol 3′-kinase/Akt pathway in vitro and in vivo. Cancer Res 2004; 64:446.

    Article  PubMed  CAS  Google Scholar 

  96. Massion PP, Taflan PM, Shyr Y, et al. Early involvement of the phosphatidylinositol 3-kinase/Akt pathway in lung cancer progression. Am J Respir Crit Care Med 2004; 170:1088.

    Article  PubMed  Google Scholar 

  97. Ho YS, Chen CH, Wang YJ, et al. Tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) induces cell proliferation in normal human bronchial epithelial cells through NFkappaB activation and cyclin Dl up-regulation. Toxicol Appl Pharmacol 2005; 205:133.

    Article  PubMed  CAS  Google Scholar 

  98. Merlo A, Herman JG, Mao L, et al. 5′ CpG island methylation is associated with transcriptional silencing of the tumour suppressor p16/CDKN2/MTS1 in human cancers. Nat Med 1995; 1:686.

    Article  PubMed  CAS  Google Scholar 

  99. Otterson GA, Kratzke RA, Coxon A, et al. Absence of p16INK4 protein is restricted to the subset of lung cancer lines that retains wildtype RB. Oncogene 1994; 9:3375.

    PubMed  CAS  Google Scholar 

  100. Belinsky SA, Nikula KJ, Palmisano WA, et al. Aberrant methylation of p16INK4a is an early event in lung cancer and a potential biomarker for early diagnosis. Proc Natl Acad Sci U S A 1998; 95:11891.

    Article  PubMed  CAS  Google Scholar 

  101. Kamb A, Gruis NA, Weaver-Feldhaus J, et al. A cell cycle regulator potentially involved in genesis of many tumor types. Science 1994; 264:436.

    PubMed  CAS  Google Scholar 

  102. Kratzke RA, Greatens TM, et al. Rb and p16INK4a expression in resected non-small cell lung tumors. Cancer Res 1996; 56:3415.

    PubMed  CAS  Google Scholar 

  103. Vonlanthen S, Heighway J, et al. Expression of p16INK4a/p16alpha and p19ARF/p16beta is frequently altered in non-small cell lung cancer and correlates with p53 overexpression. Oncogene 1998; 17:2779.

    Article  PubMed  CAS  Google Scholar 

  104. Sanchez-Cespedes M, Reed AL, et al. Inactivation of the INK4A/ARF locus frequently coexists with TP53 mutations in non-small cell lung cancer. Oncogene 1999; 18:5843.

    Article  PubMed  CAS  Google Scholar 

  105. Slebos RJ, Kibbelaar RE, et al. K-ras oncogene activation as a prognostic marker in adenocarcinoma of the lung. N Engl J Med 1990; 323:561.

    Article  PubMed  CAS  Google Scholar 

  106. Sugio K, Ishida T, et al. Ras gene mutations as a prognostic marker in adenocarcinoma of the human lung without lymph node metastasis. Cancer Res 1992; 52:2903.

    PubMed  CAS  Google Scholar 

  107. Rosell R, Li S, et al. Prognostic impact of mutated K-ras gene in surgically resected non-small cell lung cancer patients. Oncogene 1993; 8:2407.

    PubMed  CAS  Google Scholar 

  108. Silini EM, Bosi F, et al. K-ras gene mutations: an unfavorable prognostic marker in stage I lung adenocarcinoma. Virchows Arch 1994; 424:367.

    Article  PubMed  CAS  Google Scholar 

  109. Rosell R, Monzo M, et al. K-ras genotypes and prognosis in non-small-cell lung cancer. Ann Oncol 1995; 6(Suppl 3):S15.

    PubMed  Google Scholar 

  110. Cho JY, Kim JH, et al. Correlation between K-ras gene mutation and prognosis of patients with nonsmall cell lung carcinoma. Cancer 1997; 79:462.

    Article  PubMed  CAS  Google Scholar 

  111. Fukuyama Y, Mitsudomi T, et al. K-ras and p53 mutations are an independent unfavorable prognostic indicator in patients with non-small-cell lung cancer. Br J Cancer 1997; 75:1125.

    PubMed  CAS  Google Scholar 

  112. De Gregorio L, Manenti G, et al. Prognostic value of loss of heterozygosity and KRAS2 mutations in lung adenocarcinoma. Int J Cancer 1998; 79:269.

    Article  PubMed  Google Scholar 

  113. Kwiatkowski DJ, Harpole DH Jr, et al. Molecular pathologic substaging in 244 stage I non-small-cell lung cancer patients: clinical implications. J Clin Oncol 1998; 16:2468.

    PubMed  CAS  Google Scholar 

  114. Nelson HH, Christiani DC, et al. Implications and prognostic value of K-ras mutation for early-stage lung cancer in women. J Natl Cancer Inst 1999; 91:2032.

    Article  PubMed  CAS  Google Scholar 

  115. Pulling LC, Vuillemenot BR, Hutt JA, et al. Aberrant promoter hypermethylation of the death-associated protein kinase gene is early and frequent in murine lung tumors induced by cigarette smoke and tobacco carcinogens. Cancer Res 2004; 64:3844.

    Article  PubMed  CAS  Google Scholar 

  116. Jin Z, Gao F, Flagg T, Deng X. Tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone promotes functional cooperation of Bcl2 and c-Myc through phosphorylation in regulating cell survival and proliferation. J Biol Chem 2004; 279:40209.

    Article  PubMed  CAS  Google Scholar 

  117. Ren Q, Murphy SE, Zheng Z, and Lazarus P. O-Glucuronidation of the lung carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) by human udp-glucuronosyltransferases 2B7 and 1A9. Drug Metab Dispos 2000; 28:1352.

    PubMed  CAS  Google Scholar 

  118. Wiener D, Doerge DR, Fang JL, et al. Characterization of N-glucuronidation of the lung carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) in human liver: importance of UDP-glucuronosyltransferase 1A4. Drug Metab Dispos 2004; 32:72.

    Article  PubMed  CAS  Google Scholar 

  119. Maser E. Significance of reductases in the detoxification of the tobacco-specific carcinogen NNK. Trends Phar macol Sci 2004; 25:235.

    Article  CAS  Google Scholar 

  120. Hill CE, Wickliffe JK, Wolfe KJ, et al. The L84F and the I143V polymorphisms in the O6-methylguanine-DNA-methyltransferase (MGMT) gene increase human sensitivity to the genotoxic effects of the tobacco-specific nitrosamine carcinogen NNK. Pharmacogenet Genomics 2005; 15:571.

    PubMed  CAS  Google Scholar 

  121. Russo AL, Thiagalingam A, Pan H, et al. Differential DNA Hypermethylation of Critical Genes Mediates the Stage-Specific Tobacco Smoke-Induced Neoplastic Progression of Lung Cancer. Clin Cancer Res 2005; 11(7):2466.

    Article  PubMed  CAS  Google Scholar 

  122. Therriault MJ, Proulx LI, Castonguay A, Bissonnette EY. Immunomodulatory effects of the tobacco-specific carcinogen, NNK, on alveolar macrophages. Clin Exp Immu nol 2003; 132:232.

    Article  CAS  Google Scholar 

  123. Rioux N, Castonguay A. 4-(methylnitrosamino)-l-(3-pyridyl)-l-butanone modulation of cytokine release in U937 human macrophages. Cancer Immunol Immunother 2001; 49:663.

    Article  PubMed  CAS  Google Scholar 

  124. Proulx LI, Castonguay A, Bissonnette EY. Cytokine production by alveolar macrophages is down regulated by the alpha-methylhydroxylation pathway of 4-(methylnitrosamino)-l-(3-pyridyl)-l-butanone (NNK). Carcinogenesis 2004; 25:997.

    Article  PubMed  CAS  Google Scholar 

  125. Rubin H. Synergistic mechanisms in carcinogenesis by polycyclic aromatic hydrocarbons and by tobacco smoke: a biohistorical perspective with updates. Carcinogenesis 2001; 12:1903.

    Article  Google Scholar 

  126. Yun CH, Shimada T, Guengerich FP. Roles of human liver cytochrome P4502C and 3A enzymes in the 3-hydro-xylation of benzo[a]pyrene. Cancer Res 1992; 52:1868.

    PubMed  CAS  Google Scholar 

  127. Bauer E, Guo Z, Ueng YF, Bell LC, Zeldin D, Guengerich FP. Oxidation of benzo[a]pyrene by recombinant human cytochrome P450 enzymes. Chem Res Toxicol 1995; 8:136.

    Article  PubMed  CAS  Google Scholar 

  128. Shou M, Korzekwa KR, Crespi CL, Gonzalez FJ, Gelboin HV. The role of 12 cDNA-expressed human, rodent, and rabbit cytochromes P450 in the metabolism of benzo[a]-pyrene and benzo[a]pyrene trans-7,8-dihydrodiol. Mol Carcinog 1994; 10:159

    PubMed  CAS  Google Scholar 

  129. Rojas M, Camus AM, Alexandrov K, Husgafvel-Pursiainen K, Anttila S, Vainio H, et al. Stereoselective metabolism of (-)-benzo[a]pyrene-7,8-diol by human lung microsomes and peripheral blood lymphocytes: effect of smoking. Carcinogenesis 1992; 13:929.

    PubMed  CAS  Google Scholar 

  130. Alexandrov K, Rojas M, Geneste O, et al. An improved fluorometric assay for dosimetry of benzo[a]pyrene diol-epoxide-DNA adducts in smokers’ lung: comparesons with total bulky adducts and aryl hydrocarbon hydroxylase activity. Cancer Res 1992; 52:6248.

    PubMed  CAS  Google Scholar 

  131. Rojas M, Alexandrov K, Cascarbi I, Brockmoller J, Likhachev A, Pozharisski K, et al. High benzo[a]pyrene diol-epoxide DNA adduct levels in lung and blood cells from individuals with combined CYP1A1 MspI/MspI-GSTMl*0/*0 genotypes. Pharmacogenetics 1997; 8:109.

    Google Scholar 

  132. Kawajiri K, Nakachi K, et al. Identification of genetically high risk individuals to lung cancer by DNA polymorphisms of the cytochrome P450IA1 gene. FEBS Lett 1990; 263:131.

    Article  PubMed  CAS  Google Scholar 

  133. Hayashi S, Watanabe J, Nakachi K, Kawajiri K. Genetic linkage of lung cancer-associated MspI polymorphisms with amino acid replacement in the heme binding region of the human cytochrome P450IA1 gene. J Biochem 1991; 110:407.

    PubMed  CAS  Google Scholar 

  134. Nakachi K, Imai K, Hayashi S, et al. Genetic susceptibil ity to squamous cell carcinoma of the lung in relation to cigarette smoking dose. Cancer Res 1991; 51:5177.

    PubMed  CAS  Google Scholar 

  135. Nakachi K, Hayashi S, Kawajiri K, Imai K. Association of cigarette smoking and CYP1A1 polymorphisms with adenocarcinoma of the lung by grades of differentiation. Carcinogenesis 1995; 16:2209.

    PubMed  CAS  Google Scholar 

  136. Okada T, Kawashima K, Fukushi S, et al. Association between a cytochrome P450 CYPIA1 genotype and incidence of lung cancer. Pharmacogenetics 1994; 4:333.

    PubMed  CAS  Google Scholar 

  137. Kawajiri K, Eguchi H, Nakachi K, et al. Associate of CYP1A1 germ line polymorphisms with mutations of the p53 gene in lung cancer. Cancer Res 1996; 56:72.

    PubMed  CAS  Google Scholar 

  138. Chacko M, Gupta RC. Evaluation of DNA damage in the oral mucosa of tobacco users and non-users by 32P-ad-duct assay. Carcinogenesis 1988; 9:2309.

    PubMed  CAS  Google Scholar 

  139. Phillips DH, Hewer A, Martin CN, et al. Correlation of DNA adduct levels in human lung with cigarette smoking. Nature 1988; 336:790.

    Article  PubMed  CAS  Google Scholar 

  140. Foiles PG, Miglietta LM, Quart AM, et al. Evaluation of 32P-postlabeling analysis of DNA from exfoliated oral mucosa cells as a means of monitoring exposure of the oral cavity to genotoxic agents. Carcinogenesis 1989; 10:1429.

    PubMed  CAS  Google Scholar 

  141. Randerath E, Miller RH, Mittal D, et al. Covalent DNA damage in tissues of cigarette smokers as determined by 32P-postlabeling assay. J Natl Cancer Inst 1989; 81:341.

    PubMed  CAS  Google Scholar 

  142. Garner RC, Cuzick J, Jenkins D, et al. Linear relationship between DNA adducts in human lung and cigarette smoking. IARC Scientific Publications 1990; 104:421.

    PubMed  CAS  Google Scholar 

  143. van Schooten FJ, Hillebrand MJ, van Leeuwen FE, et al. Polycyclic aromatic hydrocarbon-DNA adducts in lung tissue from lung cancer patients. Carcinogenesis 1990; 11:1677.

    PubMed  Google Scholar 

  144. Routledge MN, Garner RC, Jenkins D, Cuzick J. 32P-postlabelling analysis of DNA from human tissues. Mutat Res 1992; 282:139.

    Article  PubMed  CAS  Google Scholar 

  145. Bartsch H, Castegnaro M, Camus AM, et al. Analysis of DNA adducts in smokers’ lung and urothelium by 32P-postlabelling:metabolic phenotype dependence and comparisons with other exposure markers. IARC Scientific Publications 1993; 124:331.

    PubMed  CAS  Google Scholar 

  146. Shields PG, Bowman ED, Harrington AM, et al. Polycyclic aromatic hydrocarbon-DNA adducts in human lung and cancer susceptibility genes. Cancer Res 1993; 53:3486.

    PubMed  CAS  Google Scholar 

  147. Weston A, Bowman ED, Shields PG, et al. Detection of polycyclic aromatic hydrocarbon-DNA adducts in human lung. Environ Health Perspect 1993; 99:257.

    PubMed  CAS  Google Scholar 

  148. Degawa M, Stern SJ, Martin MV, et al. Metabolic activetion and carcinogenic-DNA adduct detection in human larynx. Cancer Res 1994; 54:4915.

    PubMed  CAS  Google Scholar 

  149. Wiencke JK, Kelsey KT, Varkonyi A, et al. Correlation of DNA adducts in blood mononuclear cells with tobacco carcinogen-induced damage in human lung. Cancer Res 1995; 55:4910.

    PubMed  CAS  Google Scholar 

  150. Wiencke JK, Thurston SW, Kelsey KT, et al. Early age at smoking initiation and tobacco carcinogen DNA damage in the lung. J Natl Cancer Inst 1999; 91:614.

    Article  PubMed  CAS  Google Scholar 

  151. Rudiger HW, Nowak D, Hartmann K, Cerutti P. Enhanced formation of benzo[a]pyrene: DNA adducts in monocytes of patients with a presumed predisposition to lung cancer. Cancer Res 1985; 45:5890.

    PubMed  CAS  Google Scholar 

  152. Cheng YW, Chen CY, Lin P, et al. DNA adduct level in lung tissue may act as a risk biomarker of lung cancer. Euro J Cancer 2000; 36:11381.

    Google Scholar 

  153. Vulimiri SV, Wu X, Baer-Dubowska W, et al. Analysis of aromatic DNA adducts and 7,8-dihydro-8-oxo-2′-deoxyguanosine in lymphocyte DNA from a case-control study of lung cancer involving minority populations. Mol Carcinog 2000; 27:34.

    Article  PubMed  CAS  Google Scholar 

  154. Brunmark P, Harriman S, Skipper PL, et al. Identification of subdomain IB in human serum albumin as a major binding site for polycyclic aromatic hydrocarbon epoxides. Chem Res Toxicol 1997; 10:880.

    Article  PubMed  CAS  Google Scholar 

  155. Melikian AA, Sun P, Pierpont C, et al. Gas chromatographic-mass spectrometric determination of benzo[a]-pyrene and chrysene diol epoxide globin adducts in humans. Cancer Epidemiol Biomarkers Prev 1997; 6:833.

    PubMed  CAS  Google Scholar 

  156. Pastorelli R, Restano J, Guanci M, Maramonte M, Magagnotti C, Allevi R, et al. Hemoglobin adducts of benzo[a]pyrene diolepoxide in newspaper vendors: association with traffic exhaust. Carcinogenesis 1996; 17:2389.

    PubMed  CAS  Google Scholar 

  157. Melikian AA, Sun P, Coleman S, Amin S, Hecht SS. Detection of DNA and globin adducts of polynuclear aromatic hydrocarbon diol epoxides by gas chromatographymass spectrometry and [3H]CH3I postlabeling of released tetraols. Chem Res Toxicol 1996; 9:508.

    Article  PubMed  CAS  Google Scholar 

  158. Zhu Y, Spitz MR, Zheng YL, et al. BPDE-induced lymphocytic 3p21.3 aberrations may predict head and neck carcinoma risk. Cancer 2002; 95:563.

    Article  PubMed  CAS  Google Scholar 

  159. Jongeneelen FJ. Methods for routine biological monitoring of carcinogenic PAH-mixtures. Sci Total Environ 1997; 199:141.

    Article  PubMed  CAS  Google Scholar 

  160. Strickland P, Kang D, Sithisarankul P. Polycyclic aromatic hydrocarbon metabolites in urine as biomarkers of exposure and effect. Environ Health Perspect 1996; 104Suppl 5:927.

    PubMed  CAS  Google Scholar 

  161. Sithisarankul P, Vineis P, Kang D, Rothman N, Caporaso N, Strickland P. The association of 1-hydroxypyrene-glucuronide in human urine with cigarette smoking and broiled or roasted meat consumption. Biomarkers 1997; 2:217.

    Article  CAS  Google Scholar 

  162. Ariese F, Verkaik M, Hoornweg GP, van de Nesse RJ, Jukema-Leenstra SR, Hofstraat JW, et al. Trace analysis of 3-hydroxy benzo[a]pyrene in urine for the biomonitoring of human exposure to polycyclic aromatic hydrocar bons. J Anal Toxicol 1994; 18:195.

    PubMed  CAS  Google Scholar 

  163. Grimmer G, Jacob J, Dettbarn G, Naujack KW. Determi nation of urinary metabolites of polycyclic aromatic hy drocarbons (PAH) for the risk assessment of PAH-ex-posed workers. Int Arch Occup Environ Health 1997; 69:231.

    Article  PubMed  CAS  Google Scholar 

  164. Mumford JL, Li X, Hu F, Lu XB, Chuang JC. Human exposure and dosimetry of polycyclic aromatic hydrocarbons in urine from Xuan Wei, China, with high lung cancer mortality associated with exposure to unvented coal smoke. Carcinogenesis 1995; 16:3031.

    PubMed  CAS  Google Scholar 

  165. Becher G, Bjorseth A. Determination of exposure to polycyclic aromatic hydrocarbons by analysis of human urine. Cancer Lett 1983; 17:301

    Article  PubMed  CAS  Google Scholar 

  166. Haugen A, Becher G, Benestad C, et al. Determination of polycyclic aromatic hydrocarbons in the urine, benzo(a)pyrene diol epoxide-DNA adducts in lymphocyte DNA, and antibodies to the adducts in sera from coke oven workers exposed to measured amounts of polycyclic aromatic hydrocarbons in the work atmosphere. Cancer Res 1986; 46:4178.

    PubMed  CAS  Google Scholar 

  167. Weston A, Bowman ED, Carr P, Rothman N, Strickland PT. Detection of metabolites of polycyclic aromatic hydrocarbons in human urine. Carcinogenesis 1993; 14:1053.

    PubMed  CAS  Google Scholar 

  168. Bowman ED, Rothman N, Hackl C, Santella RM, Weston A. Interindividual variation in the levels of certain urinary polycyclic aromatic hydrocarbon metabolites following medicinal exposure to coal tar ointment. Biomarkers 1997; 2:321.

    Article  CAS  Google Scholar 

  169. Hainaut P, Hernandez T, Robinson A, et al. IARC Data base of p53 gene mutations in human tumors and cell lines: updated compilation, revised formats and new visualisation tools. Nucleic Acids Research 1998; 26:205.

    Article  PubMed  CAS  Google Scholar 

  170. Bennett WP, Hussain SP, Vahakangas KH, et al. Molecular epidemiology of human cancer risk: gene-environment interactions and p53 mutation spectrum in human lung cancer. J Pathol 1999; 187:8.

    Article  PubMed  CAS  Google Scholar 

  171. Denissenko MF, Pao A, Jang M, Pfeifer GP. Preferential formation of benzo[a]pyrene adducts at lung cancer mutational hotspots in P53. Science 1996; 274:430.

    Article  PubMed  CAS  Google Scholar 

  172. Denissenko MF, Chen JX, Tang MS, Pfeifer GP. Cytosine methylation determines hot spots of DNA damage in the human P53 gene. Proc Natl Acad Sci U S A 1997; 94:3893.

    Article  PubMed  CAS  Google Scholar 

  173. Chen JX, Zheng Y, West M, Tang M. Carcinogens preferentially bind at methylated CpG in the p53 mutational hot spots. Cancer Res 1998; 58:2070.

    PubMed  CAS  Google Scholar 

  174. Delclos KB, Kadlubar FF. Carcinogenic aromatic amines and amides. In: Guengerich FP (ed) Comprehensive Toxicology: Chemical Carcinogens and Anticarcinogens. Elsevier Science, Oxford, UK, 1997; 12:141.

    Google Scholar 

  175. Shukla R, Liu T, Geacintov NE, Loechler EL. The major, N2-dG adduct of (+)-anti-B[a]PDE shows a dramatically different mutagenic specificity (predominantly, G->A) in a 5′-CGT-3′ sequence context. Biochem 1997; 36:10256.

    Article  CAS  Google Scholar 

  176. Moriya M, Zhang W, Johnson F, Grollman AP. Mutagenic potency of exocyclic DNA adducts: marked differences between Escherichia coli and simian kidney cells. Proc Natl Acad Sci U S A 1994; 91:11899.

    Article  PubMed  CAS  Google Scholar 

  177. Moriya M. Single-stranded shuttle phagemid for muta-genesis studies in mammalian cells: 8-oxoguanine in DNA induces targeted G.C->T.A transversions in simian kidney cells. Proc Natl Acad Sci U S A 1993; 90:1122.

    Article  PubMed  CAS  Google Scholar 

  178. Ronai ZA, Gradia S, Peterson LA, Hecht SS. G to A transitions and G to T transversions in codon 12 of the Kiras oncogene isolated from mouse lung tumors induced by 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and related DNA methylating and pyridyloxobutylating agents. Carcinogenesis 1993; 14:2419.

    PubMed  CAS  Google Scholar 

  179. Burcham PC, Marnett LJ. Site-specific mutagenesis by a propanodeoxyguanosine adduct carried on an M13 genome. J Biol Chem 1994; 269:28844.

    PubMed  CAS  Google Scholar 

  180. Belinsky SA, Devereux TR, Maronpot RR, et al. Relationship between formation of promutagenic adducts and the activation of the K-ras protooncogene in lung tumors from A/J mice treated with nitrosamines. Cancer Res 1989; 49:5305.

    PubMed  CAS  Google Scholar 

  181. You M, Cabdrian U, Maronpot RR, et al. Activation of the K-ras protooncogene in spontaneously occurring and chemically induced lung tumors of the strain A mouse. Proc Natl Acad Sci U S A 1989; 86:3070.

    Article  PubMed  CAS  Google Scholar 

  182. Spivack SD, Fasco MJ, Walker VE, Kaminsky LS. The molecular epidemiology of lung cancer. Crit Rev Toxicol 1997; 27:319.

    Article  PubMed  CAS  Google Scholar 

  183. McWilliams JE, Sanderson BJ, Harris EL, et al. Glutathione S-transferase Ml (GSTM1) deficiency and lung cancer risk. Cancer Epidemiol Biomarkers Prev 1995; 4:589.

    PubMed  CAS  Google Scholar 

  184. Rebbeck TR. Molecular epidemiology of the human glutathione S-transferase genotypes GSTM1 and GSTT1 in cancer susceptibility. Cancer Epidemiol Biomarkers Prev 1997; 6:733.

    PubMed  CAS  Google Scholar 

  185. Tang MS, Pierce JR, Doisy RP, et al. Differences and similarities in the repair of two benzo[a]pyrene diol isomers induced DNA adducts by uvrA, uvrB, and uvrC gene products. Biochemistry 1992; 31:8429.

    Article  PubMed  CAS  Google Scholar 

  186. Hess MT, Gunz D, Luneva N, et al. Base pair conformation-dependent excision of benzo[a]pyrene diol epoxideguanine adducts by human nucleotide excision repair enzymes. Mol Cell Biol 1997; 17:7069.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Maurer, C.C., Syrigos, K.N. (2006). Biology of Tobacco and Smoking. In: Syrigos, K.N., Nutting, C.M., Roussos, C. (eds) Tumors of the Chest. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-31040-1_3

Download citation

  • DOI: https://doi.org/10.1007/3-540-31040-1_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-31039-6

  • Online ISBN: 978-3-540-31040-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics