Skip to main content

Yeast Biodiversity in the Antarctic

  • Chapter
Biodiversity and Ecophysiology of Yeasts

Part of the book series: The Yeast Handbook ((YEASTHDB))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abysov CC, Babyeva IP, Biryusova VI, Kosrikina HA, Aziyeva EE (1983) On the peculiarities of ultrastructural organization of yeast cells from the depths of an Antarctic glacier (in Russian). Izv Akad Nauk SSSR Ser Biol 6:914–922

    Google Scholar 

  • Artamonova OI, Krasnilnikov OI (1972) Microflora of Antarctic and Arctic (in Russian). Trudy sovetskoy Antarkitcheskoy Expeditsii 60:302–316

    Google Scholar 

  • Atlas RM, di Menna ME, Cameron RE (1978) Ecological investigations of yeasts in Antarctic soils. Antarc Res Ser 30:27–34

    Google Scholar 

  • Babyeva IP, Golubev WI (1969) Psychrophilic yeasts in the Antarctic oases. Microbiology 38:436–440

    Google Scholar 

  • Babyeva IP, Azieva EE (1980) The taxonomic composition and ecological characers of yeasts occurring in tundra soils in West Taimir (in Russian). Mikol Fitopatol 14:99–103

    Google Scholar 

  • Babyeva IP, Golubev VI, Reshetova IS, Azieva EE, and Blagodatskaya VM (1976. Yeasts in high-latitude regions of the northern and southern hemispheres (in Russian). Vestn Mosk Univ Biol Pochvoved 31:76–82

    Google Scholar 

  • Bargagli R, Broady PA, Walton DWH (1996) Preliminary investigation of the thermal biosystem of Mount Rittman fumaroles (northern Victoria Land, Antarctica). Antarc Sci 8:121–126

    Google Scholar 

  • Barnett JA, Payne RW, Yarrow D (2000) Yeasts: characteristics and identification, 3rd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Baublis JA, Wharton RA Jr, Volz PA (1991) Diversity of micro-fungi in an Antarctic dry valley. J Basic Microbiol 31:3–12

    PubMed  CAS  Google Scholar 

  • Berg GR, Innis WE, Heikkila JJ (1987) Stress proteins and thermotolerance in psychrotrophic yeasts from arctic environments. Can J Microbiol 33:383–389

    CAS  Google Scholar 

  • Beyer L, Pingpank K, Bölter M, Seppelt RD (2004a) Soil organic matter storage in cold soils of coastal eastern Antarctica (Casey Station, Wilkes Land). In: Kimble JM (ed) Cryosols. Springer, Berlin Heielberg New York, pp 509–524

    Google Scholar 

  • Beyer L, White DM, Pingpank K, Bölter M (2004b) Composition and transformation of soil organic matter in cryosols and gelic histosols in coastal eastern Antarctica (Casey Station, Wilkes Land). In: Kimble JM (ed) Cryosols. Springer, Berlin Heidelberg New York, pp 525–556

    Google Scholar 

  • Cameron RE (1971) Antarctic soil microbial and ecological investigations. In: Quam LO (ed) Research in the Antarctic, publication no 93. American Association for the Advancement of Science, Washington, DC, pp 137–189

    Google Scholar 

  • Cameron RE (1974) Application of low-latitude microbial ecology to high-latitude deserts. In: Smiley TL, Zumberge JH (eds) Polar deserts and modern man. University of Arizona Press, Tucson, AZ, pp 71–90

    Google Scholar 

  • Cameron RE, Lacy GH, Morelli FA (1971) Furthest south soil microbial and ecological investigations. Antarc J US 6:105–106

    Google Scholar 

  • Campbell IB, Claridge GGC (2000) Soil temperature, moisture and salinity patterns in Transantarctic Mountain cold desert ecosystems. In: Davidson W, Howard-Williams C, Broady P (eds) Antarctic ecosystems: models for wider understanding. Caxton, Christchurch, pp 233–240

    Google Scholar 

  • Deegenaars ML, Watson K (1997) Stress proteins and stress tolerance in an Antarctic, psychrophilic yeast, Candida psychrophila. FEMS Microbiol Lett 151:191–196

    Article  PubMed  CAS  Google Scholar 

  • Deegenaars ML, Watson K (1998) Heat shock response in psychrophilic and psychrotrophic yeast from Antarctica. Extremophiles 2:41–49

    Article  PubMed  CAS  Google Scholar 

  • Del Frate G, Caretta G (1990) Fungi isolated from Antarctic material. Polar Biol 11:1–7

    Article  Google Scholar 

  • Di Menna ME (1960) Yeasts from Antarctica. J Gen Microbiol 23:295–300

    PubMed  CAS  Google Scholar 

  • Di Menna ME (1969) Yeasts in Antarctic soils. Antonie van Leeuwenhoek 32:29–38

    Google Scholar 

  • Fell JW, Hunter IL (1974) Torulopsis austromarina sp. nov. A yeast isolated from the Antarctic Ocean. Antonie van Leeuwenhoek 40:307–310

    Article  PubMed  CAS  Google Scholar 

  • Fell JW, Scorzetti G (2004) Reassignment of the basidomycetous yeasts Trichosporon pullulans to Guehomyces pullulans gen. nov, comb. nov. and Hyalodendron lignicola to Trichosporon lignicola comb. nov. Int J Syst Evol Microbiol 54:995–998

    PubMed  CAS  Google Scholar 

  • Fell JW, Statzell AC, Hunter IL, Phaff HJ (1969) Leucosporidium gen. n, the heterobasidiomycetous stage of several yeasts of the genus Candida. Antonie van Leeuwenhoek 35:433–442

    Article  PubMed  CAS  Google Scholar 

  • Fell J, Boekhout T, Fonseca A, Scorzetti G, Statzell-Tallman A (2000) Biodiversity and systematics of basidiomycetous yeasts as determined by large-subunit rDNA D1/D2 domain sequence analysis. Int J Syst Evol Microbiol 50:1351–1371

    PubMed  CAS  Google Scholar 

  • Feller G, Gerday C (1997) Psychrophilic enzymes: molecular basis of cold adaptation. CMLS Cell Mol Life Sci 53:830–841

    CAS  Google Scholar 

  • Fonseca A, Scorzetti G, Fell JW (2000) Diversity in the yeast Cryptococcus albidus and related species as revealed by ribosomal DNA sequence analysis. Can J Microbiol 46:7–27

    Article  PubMed  CAS  Google Scholar 

  • Friedmann EI, Weed R (1987) Microbial trace-fossil formation, biogenous, and abiotic weathering in the Antarctic cold desert. Science 236:703–705

    PubMed  CAS  Google Scholar 

  • Gadanho M, Almeida JM, Sampaio JP (2003) Assessment of yeast diversity in a marine environment in the south of Portugal by microsatellite-primed PCR. Antonie van Leeuwenhoek 84:217–227

    Article  PubMed  CAS  Google Scholar 

  • Golubev VI, Blagodatskya VM, Manukian AR, Liss OL (1981) The yeast floras of peat (in Russian). Izv Akad Nauk SSSR Ser Biol 1981:181–187

    Google Scholar 

  • Goto S, Sugiyama J, Iizuka H (1969) A taxonomic study of Antarctic yeasts. Mycologia 61:748–774

    PubMed  CAS  Google Scholar 

  • Grant DW, Sinclair NA, Nash CH (1968) Temperature-sensitive glucose fermentation in the obligately psychrophilic yeast Candida gelida. Can J Microbiol 14:1105–1110

    PubMed  CAS  Google Scholar 

  • Gueho E, Smith MT, de Hoog GS, Billon-Grand G, Christen R, Battenberg-van der Vegte WH (1992) Contributions to a revision of the genus Trichosporon. Antonie van Leeuwenhoek 621:289–316

    Google Scholar 

  • Gueho E, Improvisi L, de Hoog GS, Dupont R (1994) Trichosporon on humans: a practical account. Mycoses 37:3–10

    Article  PubMed  CAS  Google Scholar 

  • Guffogg SP, Thomas-Hall S, Holloway P, Watson K (2004) A novel psychrotolerant member of the hymenomycetous yeasts from Antarctica: Cryptococcus watticus sp. nov. Int J Syst Evol Microbiol 54:275–277

    PubMed  CAS  Google Scholar 

  • Inacio J, Fonseca A (2004) Reinstatement of Rhodotorula colostri (Castelli) Lodder and Rhodotorula crocea Shifrine & Phaff, former synonyms of Rhodotorula aurantiaca (Saito) Lodder. FEMS Yeast Res 4:557–561

    PubMed  CAS  Google Scholar 

  • Ito H, Iizuka H, Sato T (1974) A new radio-resistant yeast of Trichosporon oryzae nov. sp. isolated from rice. Agric Biol Chem 38:1597–1602

    Google Scholar 

  • Jacobs PH, Taylor HC, Shafer JC (1964) Studies of fungi at Amundsen-Scott IGY South Pole base (1957). Arch Dermatol 89:177–183

    Google Scholar 

  • Julseth CR, Inniss WE (1990a) Heat shock protein induction and the acquisition of thermotolerance in the psychrotropic yeast Trichosporon pullulans. Curr Microbiol 20:391–396

    Article  CAS  Google Scholar 

  • Julseth CR, Inniss WE (1990b) Induction of protein synthesis in response to cold shock in the psychrotrophic yeast Trichosporon pullulans. Can J Microbiol 36:519–524

    Article  CAS  Google Scholar 

  • Kates M, Baxter RM (1962) Lipid composition of mesophilic and psychrophilic yeasts (Candida species) as influenced by environmental temperature. Can J Med Sci 40:1213–1227

    CAS  Google Scholar 

  • Klingler JM, Vishniac HS (1988a) A contribution of Antarctic ecology to yeast systematics. Polarforschung 58:83–92

    Google Scholar 

  • Klingler JM, Vishniac HS (1988b) Water potential of Antarctic soils. Polarforschung 58:231–238

    Google Scholar 

  • Kockova-Kratochvilova A, Wegener K-A, Ondrusova D (1972) Ein Beitrag zur Ökologie der Hefen aus Nordost-Mecklenburg. Mycopathol Mycol Appl 48:191–212

    PubMed  CAS  Google Scholar 

  • Kurtzman CP, Robnett CJ (1998) Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie van Leeuwenhoek 73:331–371

    Article  PubMed  CAS  Google Scholar 

  • Larkin JM, Stokes JL (1968) Growth of psychrophilic microorganisms at subzero temperatures. Can J Microbiol 14:97–101

    PubMed  CAS  Google Scholar 

  • Meyer GH (1962) Microbiological populations of Antarctic air, soil, snow and melt pools. Polar Rec 11:317–318

    Google Scholar 

  • Meyer GH, Morrow MB, Wyss O (1962) Viable micro-organisms in a fifty-year-old yeast preparation in Antarctica. Nature 196:598

    Google Scholar 

  • Meyer ED, Sinclair NA, Nagy B (1975) Comparison of the survival and metabolic activity of psychrophilic and mesophilic yeasts subjected to freeze-thaw stress. Appl Microbiol 75:739–744

    Google Scholar 

  • Montes MJ, Belloch C, Galiana M, Garcia MD, Andres C, Ferrer S, Tores-Rodriguez JM, Guinea J (1999) Polyphasic taxonomy of a novel yeast from Antarctic environment. Syst Appl Microbiol 22:97–105

    PubMed  CAS  Google Scholar 

  • Nash CH, Sinclair NA (1968) Thermal injury and death in an obligately psychrophilic yeast, Candida nivalis. Can J Microbiol 14:691

    PubMed  CAS  Google Scholar 

  • Nash CH, Grant DW, Sinclair NA (1969) Thermolability of proteins synthesis in a cell-free system from the obligately psychrophilic yeast Candida gelida. Can J Microbiol 15:339–343

    PubMed  CAS  Google Scholar 

  • Newell SY, Fell JW (1970) The perfect form of a marine occurring yeast of the genus Rhodotorula. Mycologia 62:272–281

    Google Scholar 

  • Parker BC, Simmons GM Jr, Wharton RA Jr, Seaborg KG (1989) Removal of organic matter from Antarctic lakes by aerial escape of bluegreen algal mats. J Phycol 18:72–78

    Google Scholar 

  • Petrescu I, Lamotte-Brasseur J, Chessa J-P, Claeyssens M, Devreese B, Marino G, Gerday C (2000) Xylanase from the psychrophilic yeast Cryptococcus adeliae. Extremophiles 4:137–144

    Article  PubMed  CAS  Google Scholar 

  • Polyakova AV, Chernov IY, Panikov NS (2001) Yeast diversity in hydromorphic soils with reference to a grass-sphagnum wetland in western Siberia and a hummocky tundra region at Cape Barrow (Alaska) (translated edition). Microbiology 70:617–622

    Article  CAS  Google Scholar 

  • Ray MK, Shivaji S, Rao NS, Bhargava PM (1989) Yeast strains from the Schirmacher Oasis, Antarctica. Polar Biol 9:305–309

    Article  Google Scholar 

  • Renker C, Blanke, V, Börstler B, Heinrichs J, Buscot F (2004) Diversity of Cryptococcus and Dioszegia yeasts (Basidiomycota) inhabiting arbuscular mycorrhizal root or spores. FEMS Yeast Res 4:597–603

    PubMed  CAS  Google Scholar 

  • Sabri A, Jacques P, Weekers F, Bare G, Hiligsmann S, Moussaif M, Thonart P (2000) Effect of temperature on growth of psychrophilic and psychrotrophic members of Rhodotorula aurantiaca. Appl Biochem Biotechnol 84–86:391–399

    PubMed  Google Scholar 

  • Sabri A, Bare G, Jacques P, Jabrane A, Ongena M, van Heugen JC, Devreese B, Thonart P (2001) Influence of moderate temperatures on myristoyl-CoA metabolism and acyl-CoA thioesterase activity in the psychrophilic Antarctic yeast Rhodotorula aurantiaca. J Biol Chem 276:12691–12696

    Article  PubMed  CAS  Google Scholar 

  • Scorzetti G, Petrescu I, Yarrow D, Fell JW (2000) Cryptococcus adeliensis sp. nov, a xylanase producing basidiomycetous yeast from Antarctica. Antonie van Leeuwenhoek 77:153–157

    Article  PubMed  CAS  Google Scholar 

  • Scorzetti G, Fell JW, Fonseca A, Statzell-Tallman A (2002) Systematics of basidiomycetous yeasts: a comparison of large subunit D1/D2 and internal transcribed spacer rDNA regions. FEMS Yeast Res 2:495–517

    PubMed  CAS  Google Scholar 

  • Silver SA, Sinclair NA (1979) Temperature induced atypical morphogenesis of the obligately psychrophilic yeast, Leucosporidium stokesii. Mycopathologia 67:59–64

    Article  Google Scholar 

  • Silver SA, Yall I, Sinclair NA (1977) Molecular basis for the maximum growth temperature of an obligately psychrophilic yeast, Leucosporidium stokesii. J Bacteriol 132:676–680

    PubMed  CAS  Google Scholar 

  • Sinclair NA, Stokes JL (1965) Obligately psychrophilic yeasts from the polar regions. Can J Microbiol 11:259–269

    PubMed  CAS  Google Scholar 

  • Soneda M (1961) On some yeasts from the Antarctic region. Biol Res Jpn Res Exped 15:3–10

    Google Scholar 

  • Sugita T, Takashima M, Ikeda R, Nakase T, Shinoda T (2000) Intraspecies diversity of Cryptococcus laurentii as revealed by sequences of internal transcribed spacer regions and 28S rRNA gene and taxonomic position of C. laurentii clinical isolates. J Clin Microbiol 38:1468–1471

    PubMed  CAS  Google Scholar 

  • Summerbell RC (1983) The heterobasidomycetous yeast genus Leucosporidium in an area of temperate climate. Can J Bot 61:1402–1410

    Google Scholar 

  • Swan TM, Watson K (1997) Membrane fatty acid composition and membrane fluidity as parameters of stress tolerance in yeast. Can J Microbiol 43:70–77

    Article  PubMed  CAS  Google Scholar 

  • Takashima M, Sugita T, Shinoda T, Nakase T (2003) Reclassification of the Cryptococcus laurentii complex: three new combinations C. aureus, C. carnescens and C. peneaus from the complex. Int J Syst Evol Microbiol 53:1187–1194

    Article  PubMed  CAS  Google Scholar 

  • Thomas-Hall S, Watson K (2002) Cryptococcus nyarrowii sp. nov, a basidiomycetous yeast from Antarctica. Int J Syst Evol Microbiol 52:1033–1038

    PubMed  CAS  Google Scholar 

  • Thomas-Hall S, Watson K, Scorzetti G (2002) Cryptococcus statzelliae sp. nov. and three novel strains of Cryptococcus victoriae, yeasts isolated from Antarctic soils. Int J Syst Evol Microbiol 52:2303–2308

    PubMed  CAS  Google Scholar 

  • Tosi S, Onofri S, Brusoni, M, Zucconi L, Vishniac H (2005) Response of Antarctic soil fungal assemblages to experimental warming and reduction of UV radiation. Polar Biol 28:470–482

    Article  Google Scholar 

  • Tubaki K (1961) Notes on some fungi and yeasts from Antarctica. Antarc Rec (Tokyo) 11:161–162

    Google Scholar 

  • Uydess IL, Vishniac WV (1976) Electron microscopy of Antarctic soil bacteria. In: Heinrich MR (ed) Extreme environments — mechanisms of microbial adaptation. Academic, New York, pp 29–56

    Google Scholar 

  • Van Uden N (1984) Temperature profiles of yeasts. Adv Microb Physiol 25:195–251

    PubMed  Google Scholar 

  • Van Uden N, Abranches P, Cabeça-Silva C (1968) Temperature functions of thermal death in yeasts and their relation to the maximum temperature for growth. Arch Mikrobiol 61:381–393

    Article  PubMed  Google Scholar 

  • Vidal-Leira M, Buckley H, van Uden N (1979) Distribution of the maximum temperature for growth among yeasts. Mycologia 71:493–501

    Google Scholar 

  • Vishniac HS (1985) Cryptococcus friedmanii, a new species of yeast from the Antarctic. Mycologia 77:149–153

    PubMed  CAS  Google Scholar 

  • Vishniac HS (1995) Simulated in situ competitive ability and survival of a representative soil yeast, Cryptococcus albidus. Microb Ecol 30:309–320

    Article  Google Scholar 

  • Vishniac HS, Hempfling WP (1979a) Cryptococcus vishniacii sp. nov, an Antarctic yeast. Int J Syst Bacteriol 29:153–158

    Google Scholar 

  • Vishniac HS, Hempfling WP (1979b) Evidence of an indigenous microbiota (yeast) in the Dry Valleys of Antarctica. J Gen Microbiol 112:301–314

    Google Scholar 

  • Vishniac HS, Klingler J (1988) Yeasts in the Antarctic Desert. In: Megusar F, Gantar M (eds) Perspectives in microbial ecology. Proc IV ISME 1986. Slovene Society for Microbiology, Ljubljana, pp 46–51

    Google Scholar 

  • Vishniac HS, Kurtzman CP (1992) Cryptococcus antarcticus sp. nov. and Cryptococcus albidosimilis sp. nov, basidioblastomycetes from Antarctic soils. Int J Syst Bacteriol 42:547–553

    Article  Google Scholar 

  • Vishniac WV, Mainzer SE (1973) Antarctica as a Martian model. In: Sneath PHS (ed) Life sciences and space research XI. Akademie, Berlin, pp 3–31

    Google Scholar 

  • Watson K (1980) Homeoviscous adaptation in psychrophilic, mesophilic and thermophilic yeasts. In: Kates M, Kuksis A (eds) Membrane fluidity. Humana, Clifton, NJ, pp 349–363

    Google Scholar 

  • Watson K, Arthur H, Shipton WA (1976) Leucosporidium yeasts: obligate psychrophiles which alter membrane-lipid and cytochrome composition with temperature. J Gen Microbiol 97:11–18

    PubMed  CAS  Google Scholar 

  • Woolfolk SW, Inglis GD (2004) Microorganisms associated with field-collected Chrysoperla rufilabris (Neuroptera: Chrysopidae) adults with emphasis on yeast symbionts. Biol Control 29(2):155–168

    Article  Google Scholar 

  • Wynn-Williams DD (1980) Seasonal fluctuations in microbial activity in Antarctic moss peat. Biol J Linnean Soc 14:11–28

    Google Scholar 

  • Wynn-Williams DD (1982) Simulation of seasonal changes in microbial activity of maritime Antarctic peat. Soil Biol Biochem 14:1–12

    Article  CAS  Google Scholar 

  • Wynn-Williams DD (1983) Microflora — microfauna interactions in Antarctic moss peat decomposition processes. In: Andre HM, de Medts A, Gregoire-Wibo C, Wauthy G (eds) Proceedings of the 8th international soil zoology symposium. Dieu-Brichart, Ottignies-Louvain-sur-la-Neuve, pp 237–246

    Google Scholar 

  • Zsolt J (1957) Egy új élesztö:Dioszegia hungarica nov gen et sp Botanikai Közlemények 47:63–66

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vishniac, H.S. (2006). Yeast Biodiversity in the Antarctic. In: Péter, G., Rosa, C. (eds) Biodiversity and Ecophysiology of Yeasts. The Yeast Handbook. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-30985-3_16

Download citation

Publish with us

Policies and ethics