Skip to main content

Ab Initio Calculation of Hyperfine Interaction Parameters: Recent Evolutions, Recent Examples

  • Conference paper
  • 665 Accesses

Abstract

For some years already, ab initio calculations based on Density Functional Theory (DFT) belong to the toolbox of the field of hyperfine interaction studies. In this paper, the standard ab initio approach is schematically sketched. New features, methods and possibilities that broke through during the past few years are listed, and their relation to the standard approach is explained. All this is illustrated by some highlights of recent ab initio work done by the Nuclear Condensed Matter Group at the K.U.Leuven.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blaha P., Schwarz K., Madsen G., Kvasnicka D. and Luitz J., In: WIEN2k, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties, ISBN 3-9501031-1-2 (1999).

    Google Scholar 

  2. Cottenier S., In: Density Functional Theory and the Family of (L)APW-methods: a step-bystep introduction, Instituut voor Kern — en Stralingsfysica, K.U.Leuven, Belgium, ISBN 90-807215-1-4 (freely available at http://http://www.wien2k.at/reg_user/textbooks).

  3. Sjöstedt E., Nordström L. and Singh D. J., Solid State Commun. 114 (2000), 15.

    Article  ADS  Google Scholar 

  4. Madsen G. K. H., Blaha P., Schwarz K., Sjöstedt E. and Nordström L., Phys. Rev., B 64 (2001), 195134.

    Article  ADS  Google Scholar 

  5. Aryasetiawan F. and Gunnarsson O., Rep. Prog. Phys. 61 (1998), 237.

    Article  ADS  Google Scholar 

  6. Sandratskii L. M., Adv. Phys. 47 (1998), 91.

    Article  ADS  Google Scholar 

  7. Laskowski R., Madsen G. K. H., Blaha P. and Schwarz K., Phys. Rev., B 69 (2004), 140408(R).

    Article  ADS  Google Scholar 

  8. Parlinski K., Computer code Phonon (http://wolf.ifj.edu.pl/phonon/).

    Google Scholar 

  9. Shukla A., Calandra M. and d’Astuto M. et al., Phys. Rev. Lett. 90 (2003), 095506.

    Article  ADS  Google Scholar 

  10. Tuckerman M. E., J. Phys. Condens. Matter 14 (2002), R1297.

    Article  ADS  MathSciNet  Google Scholar 

  11. Potzger K., Weber A., Bertschat H., Zeitz W.-D. and Dietrich M., Phys. Rev. Lett. 88 (2002), 247201.

    Article  ADS  Google Scholar 

  12. Prandolini M. J., Manzhur Y., Weber A., Potzger K., Bertschat H. H. and Dietrich M., Appl. Phys. Lett. 85 (2004), 76.

    Article  ADS  Google Scholar 

  13. Cottenier S., Bellini V., Çakmak M., Manghi F. and Rots M., Phys. Rev. B 70 (2004), 155418.

    Article  ADS  Google Scholar 

  14. Bellini V., Cottenier S., Çakmak M., Manghi F. and Rots M., Phys. Rev. B 70 (2004), 155419.

    Article  ADS  Google Scholar 

  15. Rao G. N., Hyperfine Interact. 24–26 (1985), 1119.

    Article  Google Scholar 

  16. Akai H., Akai M., Blügel S., Zeller R. and Dederichs P. H., J. Magn. Magn. Mater. 45 (1984), 291.

    Article  ADS  Google Scholar 

  17. Akai M., Akai H. and Kanamori J., J. Phys. Soc. Jpn. 54 (1985), 4246.

    Article  ADS  Google Scholar 

  18. Akai H., Akai M. and Kanamori J., J. Phys. Soc. Jpn. 54 (1985), 4257.

    Article  ADS  Google Scholar 

  19. Akai H., Akai M., Blügel S., Drittler B., Ebert H., Terakura K., Zeller R. and Dederichs P. H., Prog. Theor. Phys., Suppl. 101 (1990), 11.

    Article  ADS  Google Scholar 

  20. Ebert H., Zeller R., Drittler B. and Dederichs P. H., J. Appl. Phys. 67 (1990), 4576.

    Article  ADS  Google Scholar 

  21. Korhonen T., Settels A., Papanikolaou N., Zeller R. and Dederichs P. H., Phys. Rev., B 62 (2000), 452.

    Article  ADS  Google Scholar 

  22. Cottenier S. and Haas H., Phys. Rev., B 62 (2000), 461.

    Article  ADS  Google Scholar 

  23. Haas H., Hyperfine Interact. 151–152 (2003), 173.

    Article  Google Scholar 

  24. Torumba D., Cottenier S., Vanhoof V. and Rots M., submitted to Phys. Rev., B (2004) [preprint on request].

    Google Scholar 

  25. Morales M. A, Passamani E. C. and Baggio-Saitovitch E., Phys. Rev., B 66 (2002), 144422.

    Article  ADS  Google Scholar 

  26. Vanhoof V., Cottenier S., l’Abbé C. and Rots M., manuscript in preparation.

    Google Scholar 

  27. Christiansen J., et al., Z. Phys., B 24 (1976), 177.

    Article  ADS  Google Scholar 

  28. Phalet T., Prandolini M. J., Brewer W. D., De Moor P., Schuurmans P., Severijns N., Turrell B. G., Van Geert A., Vereecke B. and Versyck S., Phys. Rev. Lett. 86 (2001), 902.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefaan Cottenier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this paper

Cite this paper

Cottenier, S., Vanhoof, V., Torumba, D., Bellini, V., Çakmak, M., Rots, M. (2005). Ab Initio Calculation of Hyperfine Interaction Parameters: Recent Evolutions, Recent Examples. In: Maier, K., Vianden, R. (eds) HFI/NQI 2004. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-30924-1_2

Download citation

Publish with us

Policies and ethics