Advertisement

Dynamics of Socio-Technical Change: Micro Cogeneration in Energy System Transformation Scenarios

  • Jan-Peter Voß
  • Corinna Fischer
Chapter

Keywords

Fuel Cell Energy System Policy Scenario International Energy Agency District Heating 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Chapter 2: Dynamics of Socio-Technical Change: Micro Cogeneration in Energy System Transformation Scenarios

  1. Arthur WB (1997) Increasing Returns and Path Dependence in the Economy. University of Michigan Press, MichiganGoogle Scholar
  2. Axelrod R, Cohen MD (2000) Harnessing Complexity. Organizational Implications of a Scientific Frontier. Free Press, New YorkGoogle Scholar
  3. Berkhout F, Smith A, Stirling A (2004) Socio-Technological Regimes and Transition Contexts. In: Elzen B, Geels FW, Green K (eds) System Innovation and the Transition to Sustainability. Edward Elgar, Cheltenham, pp 48–57Google Scholar
  4. Bijker WE, Hughes TP, Pinch TJ (1987) The Social Construction of Technological Systems. MIT Press, CambridgeGoogle Scholar
  5. Canzler W, Dierkes M (2001) Informationelle Techniksteuerung: öffentliche Diskurse und Leitbildentwicklungen. In: Simonis G, Martinsen R, Saretzki T (eds) Politik und Technik. Analysen zum Verhältnis von technologischem, politischem und staatlichen Wandel am Anfang des 21.Jahrhunderts. PVS special edition 31/2000. Westdeutscher Verlag, Wiesbaden, pp 457–475Google Scholar
  6. Coutard O (1999) The Governance of Large Technical Systems. Routledge, LondonGoogle Scholar
  7. CSTM (2001) Electricity in Flux: Sociotechnical Change in the Dutch Electricity System, 1970–2000. Project report. Centre for Clean Technology and Environmental Policy at the University of Twente, BilthovenGoogle Scholar
  8. Dierkes M, Hoffmann U, Marz L (1992) Leitbild und Technik: zur Entstehung und Steuerung technischer Innovationen. edn Sigma, BerlinGoogle Scholar
  9. Diekmann J, Hopf R, Ziesing HJ, Kleemann M, Krey V, Markewitz P, Martinsen D, Vögele S, Eichhammer W, Jochem E, Mannsbart W, Schlomann B, Schön M, Wietschel M, Matthes FC, Cames M, Harthan R (2003) Politikszenarien für den Klimaschutz — Langfristszenarien und Handlungsempfehlungen ab 2012 (Politikszenarien III). Deutsches Institut für Wirtschaftsforschung (DIW), Forschungszentrum Jülich, Fraunhofer Institut für Systemtechnik und Innovationsforschung, Öko-Institut, Berlin Jülich KarlsruheGoogle Scholar
  10. Dosi G (1988) The Nature of the Innovative Process. In: Dosi G, Freeman C, Nelson R, Silverberg G, Soete L (eds) Technical Change and Economic Theory. Pinter, London New York, pp 221–238Google Scholar
  11. Eising R (2000) Liberalisierung und Europäisierung. Die regulative Reform der Elektrizitätsversorgung in Großbritannien, der Europäischen Gemeinschaft und der Bundesrepublik Deutschland. Leske+Budrich, OpladenGoogle Scholar
  12. Enquete-Kommission (2002) Nachhaltige Energieversorgung unter den Bedingungen der Globalisierung und der Liberalisierung. Deutscher Bundestag, Berlin. http://www.bundestag.de/parlament/kommissionen/archiv/ener/index.html. Last accessed: Mar 9, 2005Google Scholar
  13. Fischedick M, Hanke T, Hennicke P, Lechtenböhmer S, Merten F, Viefhues D (1999/2001) Bewertung eines Ausstiegs aus der Kernenergie aus klimapolitischer und volkswirtschaftlicher Sicht. Mit überarbeiteter Zusammenfassung vom Januar 2001. Wissenschaftszentrum Nordrhein-Westfalen, Wuppertal Institut für Klima, Umwelt, Energie, Öko-Institut, Wuppertal Freiburg Bremen BerlinGoogle Scholar
  14. Fischedick M, Nitsch J, Lechtenböhmer S, Hanke T, Barthel C, Jungbluth C, Assmann D, vor der Brüggen T, Trieb F, Nast M, Langniß O, Brischke LA (2002) Langfristszenarien für eine nachhaltige Energienutzung in Deutschland. Umweltbundesamt, BerlinGoogle Scholar
  15. Geels F (2001) Technological Transitions as Evolutionary Reconfiguration Processes: A Multi-Level Perspective and a Case-Study. Presented at the conference: The Future of Innovation Studies, organized by Eindhoven Centre for Innovation Studies (ECIS), EindhovenGoogle Scholar
  16. Geels F (2002a) Understanding Technological Transitions: A Critical Literature Review and a Pragmatic Conceptual Synthesis. Presented at the conference: Twente workshop on Transitions and System Innovations, TwenteGoogle Scholar
  17. Geels F (2002b) Understanding the dynamics of technological transitions. Twente University Press, EnschedeGoogle Scholar
  18. Grin J, Grunwald A (2000) Vision Assessment: Shaping Technology in 21st Century Society. Towards a Repertoire for Technology Assessment. Springer, Berlin Heidelberg New YorkGoogle Scholar
  19. Holst Jørgensen B, Nielsen O, Reuss T, Wehnert T (2004) EurEnDel. Technology and Social Visions for Europe’s Energy Future. A Europe-wide Delphi Study. Institut für Zukunftsstudien und Technologiebewertung, BerlinGoogle Scholar
  20. Hughes TP (1983) Networks of Power: Electrification 1880–1930. Johns Hopkins University Press, BaltimoreGoogle Scholar
  21. IEA, OECD (2003) Energy to 2050. Scenarios for a Sustainable Future. International Energy Agency, Organization for Economic Cooperation and Development, ParisGoogle Scholar
  22. Jäger T, Mertens J, Karger C (2004) Integrierte Mikrosysteme der Versorgung: Szenariobeschreibungen. http://www.mikrosysteme.org/documents/IMV_Szenarien.pdf. Last accessed: Mar 15, 2005Google Scholar
  23. Kemp R (1994) Technology and the Transition to Environmental Sustainability. The Problem of Technological Regime Shifts. Futures 26:1023–1046CrossRefGoogle Scholar
  24. Konrad K (2004) Prägende Erwartungen. Szenarien als Schrittmacher der Technikentwicklung. edn Sigma, BerlinGoogle Scholar
  25. La Porte TR (1991) Responding to Large Technical Systems: Control or Anticipation. Kluwer, DordrechtGoogle Scholar
  26. Larsen H, Sønderberg Petersen L (2002) Risø Energy Report 1. New and Emerging Technologies. Options for the Future. Risø National Laboratory, RoskildeGoogle Scholar
  27. Matthes FC, Cames M (2000) Energiewende 2020: Der Weg in eine zukunftsfähige Energiewirtschaft. Heinrich-Böll-Stiftung, BerlinGoogle Scholar
  28. Mayntz R, Hughes TP (1988) The Development of Large Technical Systems. Campus, Frankfurt New YorkGoogle Scholar
  29. Nakicenovic N, Riahi, K (2002) An Assessment of Technological Change Across Selected Energy Scenarios. International Institute for Applied Systems Analysis (IIASA), LaxenburgGoogle Scholar
  30. Nelson RR (2000) Recent Evolutionary Theorizing About Economic Change. In: Ortmann G, Sydow J, Türk K (eds) Theorien der Organisation. Die Rückkehr der Gesellschaft. Westdeutscher Verlag, Opladen, pp 81–123Google Scholar
  31. Nelson RR, Winter SG (1982) An Evolutionary Theory of Economic Change. Bellknap, Cambridge MassachussetsGoogle Scholar
  32. Nitsch J, Krewitt W, Nast M, Viebahn P, Gärtner S, Pehnt M, Reinhardt G, Schmidt R, Uihlein A, Barthel C, Fischedick M, Merten F (2004) Ökologisch optimierter Ausbau der Nutzung erneuerbarer Energien in Deutschland. Deutsches Zentrum für Luft-und Raumfahrt, Institut für Energie-und Umweltforschung, Wuppertal Institut für Klima, Umwelt, Energie, Stuttgart Heidelberg WuppertalGoogle Scholar
  33. Norgaard RB (1994) Development Betrayed. The End of Progress and a Coevolutionary Revisioning of the Future. Routledge, LondonGoogle Scholar
  34. Patterson W (1999) Transforming Electricity. The Coming Generation of Change. Earthscan, LondonGoogle Scholar
  35. Pehnt M, Fischer C, Sauter R, Cames M, Schneider L, Voß, JP, Grashof K, Praetorius B, Schumacher K (2004) MicroCHP-a sustainable innovation? Presented at the conference: Erfolgreiche Energieinnovationsprozesse, February 2004, GrazGoogle Scholar
  36. Pfaffenberger W, Hille M (2004) Investitionen im liberalisierten Energiemarkt: Optionen, Marktmechanismen, Rahmenbedingungen. bremer energie institut, BremenGoogle Scholar
  37. Pierson P (2000) Increasing Returns, Path Dependence, and the Study of Politics. American Political Science Review 94(2):251–267Google Scholar
  38. Prognos AG (2000) Energiereport III. Die längerfristige Entwicklung der Energiemärkte im Zeichen von Wettbewerb und Umwelt. Schaeffer-Poeschel, StuttgartGoogle Scholar
  39. Rip A (1995) Introduction of New Technology: Making Use of Recent Insights from Sociology and Economics of Technology. Technology Analysis & Strategic Management, 7(4):417–431Google Scholar
  40. Rip A (2002) Co-Evolution of Science, Technology and Society. An Expert Review, Berlin-Brandenburgische Akademie der Wissenschaften. Enschede.. www.sciencepolicystudies.de/dok/expertise-rip.pdf. Last accessed: Mar 9, 2005Google Scholar
  41. Rip A, Kemp R (1998) Technological Change. In: Rayner S, Malone EL (eds) Human Choice and Climate Change. Batelle Press, Ohio, pp 327–399Google Scholar
  42. Robinson JB (1982) Energy Backcasting. A Proposed Method of Policy Analysis. Energy Policy, 10:337–344CrossRefGoogle Scholar
  43. Robinson JB (2003) Future Subjunctive: Backcasting as Social Learning. Futures 35:839–856CrossRefGoogle Scholar
  44. Shell International (2001) Energy Choices, Needs and Possibilities. Scenarios to 2050. Global Business Environment. Shell International Ltd, LondonGoogle Scholar
  45. Schneider V, Werle R (1998) Co-Evolution and Development of Large Technical Systems in Evolutionary Perspective. In: García CE, Sanz-Menédez L (eds) Management and Technology, Vol. 5. European Commission, Luxemburg, pp 12–29Google Scholar
  46. Smil V (2003) Energy at the Crossroads: Global Perspectives and Uncertainties. Massachusetts Institute of Technology Press, Cambridge MassachusettsGoogle Scholar
  47. Summerton J (1992) Changing Large Technical Systems. Westview, Boulder ColoradoGoogle Scholar
  48. van Lente H (1993) Promising Technologies: The Dynamics of Expectations in Technological Development. Twente University Press, EnschedeGoogle Scholar
  49. van Lente H, Rip A (1998) Expectations in Technological Developments: An Example of Prospective Structures to be Filled in by Agency. In: Disco C, van der Meulen, BJR (eds) Getting New Things Together. Walter de Gruyter, Berlin New York, pp 195–220Google Scholar
  50. Velte D (2004) The EurEnDel Scenarios. Europe’s Energy System by 2030. Institut für Zukunftsforschung und Technologiebewertung, BerlinGoogle Scholar
  51. Voß JP (2000) Institutionelle Arrangements zwischen Zukunfts-und Gegenwartsfähigkeit: Verfahren der Netzregelung im liberalisierten deutschen Stromsektor. In: Prittwitz V (ed) Institutionelle Arrangements in der Umweltpolitik. Zukunftsfähigkeit durch innovative Verfahrenskombination? Leske+Budrich, Opladen, pp 227–254Google Scholar
  52. Voß JP, Kemp R (2005) Reflexive Governance and Sustainable Development. In: Voß JP, Bauknecht D, Kemp R (eds) Reflexive Governance for Sustainable Development. Edward Elgar, Cheltenham (manuscript submitted)Google Scholar
  53. Voß JP, Konrad K, Truffer B (2005) Sustainability Foresight. Reflexive Governance in the Transformation of Utility Systems. In: Voß JP, Bauknecht D, Kemp R (eds) Reflexive Governance for Sustainable Development. Edward Elgar, Cheltenham (manuscript submitted)Google Scholar
  54. Weyer J, Kirchner U, Riedl L, Schmidt JFK (1997) Technik, die Gesellschaft schafft. edn Sigma, BerlinGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Jan-Peter Voß
    • 1
  • Corinna Fischer
    • 2
  1. 1.Öko-Institut — Institute for Applied EcologyBerlinGermany
  2. 2.Forschungsstelle für Umweltpolitik — Environmental Policy Research CenterFreie Universität BerlinBerlinGermany

Personalised recommendations