Skip to main content

Genomic Analysis of Cellular Morphology in Candida albicans

  • Chapter

Part of the book series: The Mycota ((MYCOTA,volume 13))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   209.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alonso-Monge R, Navarro-Garcia F, Roman E, Negredo AI, Eisman B, Nombela C, Pla J (2003) The Hog1 mitogenactivated protein kinase is essential in the oxidative stress response and chlamydospore formation in Candida albicans. Eukaryot Cell 2:351–361

    Article  CAS  PubMed  Google Scholar 

  • Balan I, Alarco AM, Raymond M (1997) The Candida albicans CDR3 gene codes for an opaque-phase ABC transporter. J Bacteriol 179:7210–7218

    CAS  PubMed  Google Scholar 

  • Bennett RJ, Uhl MA, Miller MG, Johnson AD (2003) Identification and characterization of a Candida albicans mating pheromone. Mol Cell Biol 23:8189–8201

    Article  CAS  PubMed  Google Scholar 

  • Bockmuhl DP, Krishnamurthy S, Gerads M, Sonneborn A, Ernst JF (2001) Distinct and redundant roles of the two protein kinase A isoforms Tpk1p and Tpk2p in morphogenesis and growth of Candida albicans. Mol Microbiol 42:1243–1257

    Article  CAS  PubMed  Google Scholar 

  • Braun BR, Johnson AD (1997) Control of filament formation in Candida albicans by the transcriptional repressor TUP1. Science 277:105–109

    Article  CAS  PubMed  Google Scholar 

  • Bruno VM, Mitchell AP (2004) Large-scale gene function analysis in Candida albicans. Trends Microbiol 12:157–161

    Article  CAS  PubMed  Google Scholar 

  • Cloutier M, Castilla R, Bolduc N, Zelada A, Martineau P, Bouillon M, Magee BB, Passeron S, Giasson L, Cantore ML (2003) The two isoforms of the cAMP-dependent protein kinase catalytic subunit are involved in the control of dimorphism in the human fungal pathogen Candida albicans. Fungal Genet Biol 38:133–141

    Article  CAS  PubMed  Google Scholar 

  • Cowen LE, Nantel A, Whiteway MS, Thomas DY, Tessier DC, Kohn LM, Anderson JB (2002) Population genomics of drug resistance in Candida albicans. Proc Natl Acad Sci USA 99:9284–9289

    Article  CAS  PubMed  Google Scholar 

  • Daniels KJ, Lockhart SR, Staab JF, Sundstrom P, Soll DR (2003) The adhesin Hwp1 and the first daughter cell localize to the a/a portion of the conjugation bridge during Candida albicans mating. Mol Biol Cell 14:4920–4930

    Article  CAS  PubMed  Google Scholar 

  • Davis DA, Bruno VM, Loza L, Filler SG, Mitchell AP (2002) Candida albicans Mds3p, a conserved regulator of pH responses and virulence identified through insertional mutagenesis. Genetics 162:1573–1581

    CAS  PubMed  Google Scholar 

  • De Backer MD, Ilyina T, Ma XJ, Vandoninck S, Luyten WH, Vanden Bossche H (2001) Genomic profiling of the response of Candida albicans to itraconazole treatment using a DNA microarray. Antimicrob Agents Chemother 45:1660–1670

    PubMed  Google Scholar 

  • DeRisi JL, Iyer VR, Brown PO (1997) Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278:680–686

    Article  CAS  PubMed  Google Scholar 

  • Doedt T, Krishnamurthy S, Bockmuhl DP, Tebarth B, Stempel C, Russell CL, Brown AJ, Ernst JF (2004) APSES proteins regulate morphogenesis and metabolism in Candida albicans. Mol Biol Cell 15:3167–3180

    Article  CAS  PubMed  Google Scholar 

  • Feng Q, Summers E, Guo B, Fink G (1999) Ras signaling is required for serum-induced hyphal differentiation in Candida albicans. J Bacteriol 181:6339–6346

    CAS  PubMed  Google Scholar 

  • Garcia-Sanchez S, Aubert S, Iraqui I, Janbon G, Ghigo JM, d’Enfert C (2004) Candida albicans biofilms: a developmental state associated with specific and stable gene expression patterns. Eukaryot Cell 3:536–545

    Article  CAS  PubMed  Google Scholar 

  • Harcus D, Nantel A, Marcil A, Rigby T, Whiteway M (2004) Transcription Profiling of cyclic AMP signaling in Candida albicans. Mol Biol Cell 15:4490–4499

    Article  CAS  PubMed  Google Scholar 

  • Hughes TR, Mao M, Jones AR, Burchard J, Marton MJ, Shannon KW, Lefkowitz SM, Ziman M, Schelter JM, Meyer MR et al. (2001) Expression profiling using microarrays fabricated by an ink-jet oligonucleotide synthesizer. Nat Biotechnol 19:342–347

    Article  CAS  PubMed  Google Scholar 

  • Hull CM, Raisner RM, Johnson AD (2000) Evidence formating of the “asexual” yeast Candida albicans in a mammalian host. Science 289:307–310

    Article  CAS  PubMed  Google Scholar 

  • Jones T, Federspiel NA, Chibana H, Dungan J, Kalman S, Magee BB, Newport G, Thorstenson YR, Agabian N, Magee PT et al. (2004) The diploid genome sequence of Candida albicans. Proc Natl Acad Sci USA 101:7329–7334

    CAS  PubMed  Google Scholar 

  • Kumamoto CA (2002) Candida biofilms. Curr Opin Microbiol 5:608–611

    Article  CAS  PubMed  Google Scholar 

  • Kvaal CA, Srikantha T, Soll DR (1997) Misexpression of the white-phase-specific gene WH11 in the opaque phase of Candida albicans affects switching and virulence. Infect Immun 65:4468–4475

    CAS  PubMed  Google Scholar 

  • Lan CY, Newport G, Murillo LA, Jones T, Scherer S, Davis RW, Agabian N (2002) Metabolic specialization associated with phenotypic switching in Candida albicans. Proc Natl Acad Sci USA 99:14907–14912

    Article  CAS  PubMed  Google Scholar 

  • Lane S, Birse C, Zhou S, Matson R, Liu H (2001) DNA array studies demonstrate convergent regulation of virulence factors by Cph1, Cph2, and Efg1 in Candida albicans. J Biol Chem 276:48988–48996

    Article  CAS  PubMed  Google Scholar 

  • Leberer E, Harcus D, Dignard D, Ushinsky S, Thomas DY, Schroppel K (2001) Ras links cellular morphogenesis to virulence by regulation of the MAP kinase and cAMP signalling pathways in the pathogenic fungus Candida albicans. Mol Microbiol 42:673–687

    Article  CAS  PubMed  Google Scholar 

  • Lee CM, Nantel A, Jiang L, Whiteway M, Shen SH (2004) The serine/threonine protein phosphatase SIT4 modulates yeast-to-hypha morphogenesis and virulence in Candida albicans. Mol Microbiol 51:691–709

    CAS  PubMed  Google Scholar 

  • Lo HJ, Kohler JR, DiDomenico B, Loebenberg D, Cacciapuoti A, Fink GR (1997) Nonfilamentous C. albicans mutants are avirulent. Cell 90:939–949

    Article  CAS  PubMed  Google Scholar 

  • Lockhart SR, Zhao R, Daniels KJ, Soll DR (2003) Alphapheromone-induced “shmooing” and gene regulation require white-opaque switching during Candida albicans mating. Eukaryot Cell 2:847–855

    CAS  PubMed  Google Scholar 

  • Magee BB, Magee PT (2000) Induction of mating in Candida albicans by construction of MTLa and MTLalpha strains. Science 289:310–313

    Article  CAS  PubMed  Google Scholar 

  • Miller MG, Johnson AD (2002) White-opaque switching in Candida albicans is controlled by mating-type locus homeodomain proteins and allows efficient mating. Cell 110:293–302

    CAS  PubMed  Google Scholar 

  • Mnaimneh S, Davierwala AP, Haynes J, Moffat J, Peng WT, Zhang W, Yang X, Pootoolal J, Chua G, Lopez A et al. (2004) Exploration of essential gene functions via titratable promoter alleles. Cell 118:31–44

    Article  CAS  PubMed  Google Scholar 

  • Morrow B, Srikantha T, Anderson J, Soll DR (1993) Coordinate regulation of two opaque-phase-specific genes during white-opaque switching in Candida albicans. Infect Immun 61:1823–1828

    CAS  PubMed  Google Scholar 

  • Murad AM, d’Enfert C, Gaillardin C, Tournu H, Tekaia F, Talibi D, Marechal D, Marchais V, Cottin J, Brown AJ (2001a) Transcript profiling in Candida albicans reveals new cellular functions for the transcriptional repressors CaTup1, CaMig1 and CaNrg1. Mol Microbiol 42:981–993

    Article  CAS  PubMed  Google Scholar 

  • Murad AM, Leng P, Straffon M, Wishart J, Macaskill S, Mac-Callum D, Schnell N, Talibi D, Marechal D, Tekaia F et al. (2001b) NRG1 represses yeast-hypha morphogenesis and hypha-specific gene expression in Candida albicans. EMBO J 20:4742–4752

    Article  CAS  PubMed  Google Scholar 

  • Nantel A, Dignard D, Bachewich C, Harcus D, Marcil A, Bouin A-P, Sensen CW, Hogues H, Van het Hoog M, Gordon P et al. (2002) Transcription profiling of Candida albicans cells undergoing the yeast to hyphal transition. Mol Biol Cell 13:3452–3465

    Article  CAS  PubMed  Google Scholar 

  • Nobile CJ, Bruno VM, Richard ML, Davis DA, Mitchell AP (2003) Genetic control of chlamydospore formation in Candida albicans. Microbiology 149:3629–3637

    Article  CAS  PubMed  Google Scholar 

  • Panwar SL, Legrand M, Dignard D, Whiteway M, Magee PT (2003) MFalpha1, the gene encoding the alpha mating pheromone of Candida albicans. Eukaryot Cell 2:1350–1360

    Article  CAS  PubMed  Google Scholar 

  • Pendrak ML, Yan SS, Roberts DD (2004) Hemoglobin regulates expression of an activator of mating-type locus alpha genes in Candida albicans. Eukaryot Cell 3:764–775

    Article  CAS  PubMed  Google Scholar 

  • Ramage G, Wickes BL, Lopez-Ribot JL (2001) Biofilms of Candida albicans and their associated resistance to antifungal agents. Am Clin Lab 20:42–44

    CAS  PubMed  Google Scholar 

  • Rocha CRC, Schroppel K, Harcus D, Marcil A, Dignard D, Taylor BN, Thomas DY, Whiteway M, Leberer E (2001) Signalling through adenylyl cyclase is essential for hyphal growth and virulence in the pathogenic fungus Candida albicans. Mol Biol Cell 12:3631–3643

    CAS  PubMed  Google Scholar 

  • Roemer T, Jiang B, Davison J, Ketela T, Veillette K, Breton A, Tandia F, Linteau A, Sillaots S, Marta C et al. (2003) Large-scale essential gene identification in Candida albicans and applications to antifungal drug discovery. Mol Microbiol 50:167–181

    Article  CAS  PubMed  Google Scholar 

  • Rogers PD, Barker KS (2002) Evaluation of differential gene expression in fluconazole-susceptible and — resistant isolates of Candida albicans by cDNA microarray analysis. Antimicrob Agents Chemother 46:3412–3417

    Article  CAS  PubMed  Google Scholar 

  • Soll DR (1992) High-frequency switching in Candida albicans. Clin Microbiol Rev 5:183–203

    CAS  PubMed  Google Scholar 

  • Soll DR (2004) Mating-type locus homozygosis, phenotypic switching andmating: a unique sequence of dependencies in Candida albicans. Bioessays 26:10–20

    Article  CAS  PubMed  Google Scholar 

  • Sonneborn A, Bockmuhl DP, Ernst JF (1999a) Chlamydospore formation in Candida albicans requires the Efg1p morphogenetic regulator. Infect Immun 67:5514–5517

    CAS  PubMed  Google Scholar 

  • Sonneborn A, Tebarth B, Ernst JF (1999b) Control of white-opaque phenotypic switching in Candida albicans by the Efg1p morphogenetic regulator. Infect Immun 67:4655–4660

    CAS  PubMed  Google Scholar 

  • Sudbery P, Gow N, Berman J (2004) The distinct morphogenic states of Candida albicans. Trends Microbiol 12:317–324

    Article  CAS  PubMed  Google Scholar 

  • Uhl MA, Biery M, Craig N, Johnson AD (2003) Haploinsufficiency-based large-scale forward genetic analysis of filamentous growth in the diploid human fungal pathogen C. albicans. EMBO J 22:2668–2678

    Article  CAS  PubMed  Google Scholar 

  • White TC, Agabian N (1995) Candida albicans secreted aspartyl proteinases: isoenzyme pattern is determined by cell type, and levels are determined by environmental factors. J Bacteriol 177:5215–5221

    CAS  PubMed  Google Scholar 

  • Whiteway M, Oberholzer U (2004) Candida morphogenesis and host-pathogen interactions. Curr Opin Microbiol 7:350–357

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Whiteway, M., Nante, A. (2006). Genomic Analysis of Cellular Morphology in Candida albicans. In: Brown, A.J. (eds) Fungal Genomics. The Mycota, vol 13. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-30809-1_8

Download citation

Publish with us

Policies and ethics