Skip to main content

Circadian Rhythms, Photobiology and Functional Genomics in Neurospora

  • Chapter
Fungal Genomics

Part of the book series: The Mycota ((MYCOTA,volume 13))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 209.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aronson B, Johnson K, Loros JJ, Dunlap JC (1994a) Negative feedback defining a circadian clock: autoregulation in the clock gene frequency. Science 263:1578–1584

    CAS  PubMed  Google Scholar 

  • Aronson BD, Johnson KA, Dunlap JC (1994b) The circadian clock locus frequency: a single ORF defines period length and temperature compensation. Proc Natl Acad Sci USA 91:7683–7687

    CAS  PubMed  Google Scholar 

  • Aronson BD, Lindgren KM, Dunlap JC, Loros JJ (1994c) An efficient method of gene disruption in Neurospora crassa and with potential for other filamentous fungi. Mol Gen Genet 242:490–494

    Article  CAS  PubMed  Google Scholar 

  • Arpaia G, Loros JJ, Dunlap JC, Morelli G, Macino G (1993) The interplay of light and the circadian clock: independent dual regulation of clock-controlled gene ccg-2 (eas). Plant Physiol 102:1299–1305

    Article  CAS  PubMed  Google Scholar 

  • Arpaia G, Loros JJ, Dunlap JC, Morelli G, Macino G (1995) The circadian clock-controlled gene ccg-1 is induced by light. Mol Gen Genet 247:157–163

    Article  CAS  PubMed  Google Scholar 

  • Arpaia G, Cerri F, Baima S, Macino G (1999) Involvement of protein kinase C in the response of Neurospora crassa to blue light. Mol Genet Genomics 262:314–322

    CAS  Google Scholar 

  • Ballario P, Macino G (1997) White collar proteins: PASsing the light signal in Neurospora crassa. Trends Microbiol 5:458–462

    Article  CAS  PubMed  Google Scholar 

  • Ballario P, Vittorioso P, Magrelli A, Talora C, Cabibbo A, Macino G (1996) White collar-1, a central regulator of blue-light responses in Neurospora crassa, is a zinc-finger protein. EMBO J 15:1650–1657

    CAS  PubMed  Google Scholar 

  • Ballario P, Talora C, Galli D, Linden H, Macino G (1998) Roles in dimerization and blue light photoresponse of the PAS and LOV domains of Neurospora crassa WHITE COLLAR proteins. Mol Microbiol 29:719–729

    Article  CAS  PubMed  Google Scholar 

  • Beadle GW, Tatum EL (1945) Neurospora II. Methods of producing and detecting mutations concerned with nutritional requirements. Am J Bot 32:678–686

    Google Scholar 

  • Bell-Pedersen D, Dunlap JC, Loros JJ (1992) The Neurospora circadian clock-controlled gene, ccg-2, is allelic to eas and encodes a fungal hydrophobin required for formation of the conidial rodlet layer. Genes Dev 6:2382–2394

    CAS  PubMed  Google Scholar 

  • Bell-Pedersen D, Dunlap JC, Loros JJ (1996a) Distinct cisacting elementsmediate clock, light, and developmental regulation of theNeurospora crassa eas (ccg-2) gene. Mol Cell Biol 16:513–521

    CAS  PubMed  Google Scholar 

  • Bell-Pedersen D, Shinohara M, Loros J, Dunlap JC (1996b) Circadian clock-controlled genes isolated from Neurospora crassa are late night to early morning specific. Proc Natl Acad Sci USA 93:13096–13101

    Article  CAS  PubMed  Google Scholar 

  • Bobrowicz P, Pawlak R, Correa A, Bell-Pedersen D, Ebbole DJ (2002) The Neurospora crassa pheromone precursor genes are regulated by the mating type locus and the circadian clock. Mol Microbiol 45:795–804

    Article  CAS  PubMed  Google Scholar 

  • Borkovich K, Alex L, Yarden O, Freitag M, Turner G, Read N, Seiler S, Bell-Pedersen D, Paietta J, Plesofsky N et al. (2004) Lessons from the genome sequence of Neurospora crassa: tracing the path from genomic blueprint to multicellular organism. Mol Microbiol Rev 68:1–108

    CAS  Google Scholar 

  • Cheng P, Yang Y, Heintzen C, Liu Y (2001a) Coiled coil mediated FRQ-FRQ interaction is essential for circadian clock function in Neurospora. EMBO J 20:101–108

    CAS  PubMed  Google Scholar 

  • Cheng P, Yang Y, Liu Y (2001b) Interlocked feedback loops contribute to the robustness of the Neurospora circadian clock. Proc Natl Acad Sci USA 98:7408–7413

    CAS  PubMed  Google Scholar 

  • Cheng P, Yang Y, Gardner KH, Liu Y (2002) PAS domainmediated WC-1/WC-2 interaction is essential for maintaining the steady-state level of WC-1 and the function of both proteins in clock and light responses of Neurospora. Mol Cell Biol 22:517–524

    CAS  PubMed  Google Scholar 

  • Christensen M, Falkeid G, Hauge I, Loros JJ, Dunlap JC, Lillo C, Ruoff P (2004) A frq-independent nitrate reductase rhythm in Neurospora crassa. J Biol Rhythms 19:280–286

    Article  CAS  PubMed  Google Scholar 

  • Cogoni C, Macino G (1994) Suppression of gene expression by homologous transgenes. Antonie Van Leeuwenhoek 65:205–209

    Article  CAS  PubMed  Google Scholar 

  • Cogoni C, Macino G (1997) Isolation of quelling-defective (qde) mutants impaired in posttranscriptional transgene-induced gene silencing in Neurospora crassa. Proc Natl Acad Sci USA 94:10233–10238

    Article  CAS  PubMed  Google Scholar 

  • Collett MA, Dunlap JC, Loros JJ (2001) Circadian clockspecific roles for the light response protein WHITE COLLAR-2. Mol Cell Biol 21:2619–2628

    Article  CAS  PubMed  Google Scholar 

  • Collett MA, Garceau N, Dunlap JC, Loros JJ (2002) Light and clock expression of the Neurospora clock gene frequency is differentially driven by but dependent on WHITE COLLAR-2. Genetics 160:149–158

    CAS  PubMed  Google Scholar 

  • Correa A, Lewis ZA, Greene AV, March IJ, Gomer RH, Bell-Pedersen D (2003) Multiple oscillators regulate circadian gene expression in Neurospora. Proc Natl Acad Sci USA 100:13597–13602

    Article  CAS  PubMed  Google Scholar 

  • Crosthwaite SC, Loros JJ, Dunlap JC (1995) Light-Induced resetting of a circadian clock is mediated by a rapid increase in frequency transcript. Cell 81:1003–1012

    Article  CAS  PubMed  Google Scholar 

  • Crosthwaite SC, Dunlap JC, Loros JJ (1997) Neurospora wc-1 and wc-2: transcription, photoresponses, and the origins of circadian rhythmicity. Science 276:763–769

    Article  CAS  PubMed  Google Scholar 

  • Davis RH (2000) Neurospora: contributions of a model organism. Oxford University Press, Oxford, UK

    Google Scholar 

  • Degli Innocenti F, Russo VEA (1983) Photoinduction of perithecia in Neurospora crassa by blue light. Photochem Photobiol 37:49–51

    CAS  PubMed  Google Scholar 

  • Denault DL, Loros JJ, Dunlap JC (2001) WC-2 mediates WC-1-FRQ interaction within the PAS protein-linked circadian feedback loop of Neurospora crassa. EMBO J 20:109–117

    Article  CAS  PubMed  Google Scholar 

  • Duffield GE (2003) DNA microarray analyses of circadian timing: the genomic basis of biological time. J Neuroendocrinol 15:991–1002

    Article  CAS  PubMed  Google Scholar 

  • Dunlap JC (1999) Molecular bases for circadian clocks. Cell 96:271–290

    Article  CAS  PubMed  Google Scholar 

  • Dunlap JC (2005) Blue light photoreceptors — beyond phytochromes and cryptochromes. In: Schaefer E (ed) Photomorphogenesis in plants and bacteria: function and signal transduction mechanisms. Kluwer, Dordrecht (in press)

    Google Scholar 

  • Dunlap JC, Loros JJ (2004) The Neurospora circadian system. J Biol Rhythms 19:414–424

    Article  CAS  PubMed  Google Scholar 

  • Dunlap JC, Loros JJ (2005) Neurospora photoreceptors. In: Briggs WR, Spudich J (eds) Handbook of photosensory receptors. Wiley, Berlin, pp 371–389

    Google Scholar 

  • Dunlap JC, Loros JJ, Decoursey P (eds) (2003) Chronobiology: biological timekeeping. Sinauer, Sunderland, MA

    Google Scholar 

  • Fagan T, Morse D, Hastings JW (1999) Circadian synthesis of a nuclear-encoded chloroplast glyceraldehyde-3-phosphate dehydrogenase in the dinoflagellate Gonyaulax polyedra is translationally controlled. Biochemistry 38:7689–7695

    Article  CAS  PubMed  Google Scholar 

  • Feldman JF (1967) Lengthening the period of a biological clock in Euglena by cycloheximide, an inhibitor of protein synthesis. Proc Natl Acad Sci USA 57:1080–1087

    CAS  PubMed  Google Scholar 

  • Feldman JF, Atkinson CA (1978) Genetic and physiological characterization of a slow growing circadian clock mutant of Neurospora crassa. Genetics 88:255–265

    CAS  PubMed  Google Scholar 

  • Feldman JF, Hoyle M (1973) Isolation of circadian clock mutants of Neurospora crassa. Genetics 75:605–613

    CAS  PubMed  Google Scholar 

  • Feldman J, Hoyle MN (1974) A direct comparison between circadian and noncircadian rhythms in Neurospora crassa. Plant Physiol 53:928–930

    Google Scholar 

  • Feldman JF, Waser N (1971) New mutations affecting circadian rhythmicity in Neurospora. In: Menaker M (ed) Biochronometry. National Academy of Sciences, Washington, DC, pp 652–656

    Google Scholar 

  • Feldman JF, Gardner GF, Dennison RA (1979) Genetic analysis of the circadian clock of Neurospora. In: Suda M (ed) Biological rhythms and their central mechanism. Elsevier, Amsterdam, pp 57–66

    Google Scholar 

  • Franchi L, Fulci V, Macino G (2005) Protein kinase C modulates light responses in Neurospora by regulating the blue light photoreceptor WC-1. Mol Microbiol 56(2):334–345

    Article  CAS  PubMed  Google Scholar 

  • Froehlich AC, Loros JJ, Dunlap JC (2002)WHITECOLLAR-1, a circadian blue light photoreceptor, binding to the frequency promoter. Science 297:815–819

    Article  CAS  PubMed  Google Scholar 

  • Froehlich AC, Loros JJ, Dunlap JC (2003) Rhythmic binding of a WHITE COLLAR containing complex to the frequency promoter is inhibited by FREQUENCY. Proc Natl Acad Sci USA 100:5914–5919

    Article  CAS  PubMed  Google Scholar 

  • Galagan J, Calvo S, Borkovich K, Selker E, Read N, FitzHugh W, Ma L-J, Smirnov N, Purcell S, Rehman B et al. (2003) The genome sequence of the filamentous fungus Neurospora crassa. Nature 422:859–868

    Article  CAS  PubMed  Google Scholar 

  • Garceau N (1996) Molecular and genetic studies on the frq and ccg-1 loci of Neurospora. PhD Thesis, Dartmouth Medical School, Hanover, NH

    Google Scholar 

  • Garceau N, Liu Y, Loros JJ, Dunlap JC (1997) Alternative initiation of translation and time-specific phosphorylation yield multiple forms of the essential clock protein FREQUENCY. Cell 89:469–476

    Article  CAS  PubMed  Google Scholar 

  • Gardner GF, Feldman JF (1980) The frq locus in Neurospora crassa: a key element in circadian clock organization. Genetics 96:877–886

    CAS  PubMed  Google Scholar 

  • Gorl M, Merrow M, Huttner B, Johnson J, Roenneberg T, Brunner M (2001) A PEST-like element in FREQUENCY determines the length of the circadian period in Neurospora crassa. EMBO J 20:7074–7084

    Article  CAS  PubMed  Google Scholar 

  • Greene AV, Keller N, Haas H, Bell-Pedersen D(2003)A circadian oscillator in Aspergillus spp. regulates daily development and gene expression. Eukaryot Cell 2:231–237

    Article  CAS  PubMed  Google Scholar 

  • Hafker T, Techel D, Steier G, Rensing L (1998)Differential expression of glucose-regulated (grp78) and heat-shock inducible (hsp70) genes during asexual development of Neurospora crassa. Microbiology 144:37–43

    CAS  PubMed  Google Scholar 

  • Harding R, Melles S (1983) Genetic analysis of phototropism of Neurospora crassa perithecial beaks using white collar and albino mutants. Plant Physiol 72:745–749

    Google Scholar 

  • Harding RW, Shropshire WJ (1980) Photocontrol of carotenoid biosynthesis. Annu Rev Plant Physiol 31:217–238

    Article  CAS  Google Scholar 

  • Harmer SL, Hogenesch JB, Straume M, Chang H-S, Han B, Zhu T, Wang X, Kreps JA, Kay SA (2000) Orchestrated transcription of key pathways in Arabidopsis by the circadian clock. Science 290:2110–2113

    Article  CAS  PubMed  Google Scholar 

  • Hastings JW (1960) Biochemical aspects of rhythms: phase shifting by chemicals. Cold Spring Harbor Symp Quant Biol 25:131–143

    CAS  PubMed  Google Scholar 

  • Hastings JW, Sweeney BM (1958) A persistent diurnal rhythm of luminescence in Gonyaulax polyedra. Biol Bull 115:440–448

    Google Scholar 

  • He Q, Cheng P, Yang Y, Wang L, Gardner K, Liu Y (2002) WHITE COLLAR-1, a DNA binding transcription factor and a light sensor. Science 297:840–842

    Article  CAS  PubMed  Google Scholar 

  • Heintzen C, Loros JJ, Dunlap JC (2001) VIVID, gating and the circadian clock: the PAS protein VVD defines a feedback loop that represses light input pathways and regulates clock resetting. Cell 104:453–464

    Article  CAS  PubMed  Google Scholar 

  • Hochberg ML, Sargent ML (1974) Rhythms of enzyme activity associated with circadian conidiation in Neurospora crassa. J Bacteriol 120:1164–1175

    CAS  PubMed  Google Scholar 

  • Iwasaki T, Nakahama K, Nagano M, Fujioka A, Ohyanagi H, Shigeyoshi Y (2004) A partial hepatectomy results in altered expression of clock-related and cyclic glyceraldehyde 3-phosphate dehydrogenase (GAPDH) genes. Life Sci 74:3093–3102

    Article  CAS  PubMed  Google Scholar 

  • Klemm E, Ninneman H (1978) Correlation between absorbance changes and a physiological response induced by blue light in Neurospora crassa. Photochem Photobiol 28:227–230

    Google Scholar 

  • Kloss B, Price JL, Saez L, Blau J, Rothenfluh A, Wesley CS, Young MW (1998) The Drosophila clock gene double-time encodes a protein closely related to human casein kinase Ie. Cell 94:97–107

    Article  CAS  PubMed  Google Scholar 

  • Konopka RJ, Benzer S (1971) Clock mutants of Drosophila melanogaster. Proc Natl Acad Sci USA 68:2112–2116

    CAS  PubMed  Google Scholar 

  • Kramer C, Loros JJ, Dunlap JC, Crosthwaite SK (2003) Role for antisense RNA in regulating circadian clock function in Neurospora crassa. Nature 421:948–952

    Article  CAS  PubMed  Google Scholar 

  • Lakin-Thomas P (1996) Effects of choline depletion on the circadian rhythm in Neurospora crassa. Biol Rhythm Res 27:12–30

    CAS  Google Scholar 

  • Lakin-Thomas PL, Brody S (2000) Circadian rhythms in Neurospora crassa. Proc Natl Acad Sci USA 97:256–261

    Article  CAS  PubMed  Google Scholar 

  • Lauter F-R (1996) Molecular genetics of fungal photobiology. J Genet 75:375–386

    CAS  Google Scholar 

  • Lauter F, Russo V, Yanofsky C (1992) Developmental and light regulation of eas, the structural gene for the rodlet protein of Neurospora. Genes Dev 6:2373–2381

    CAS  PubMed  Google Scholar 

  • Lee K, Loros JJ, Dunlap JC (2000) Interconnected feedback loops in the Neurospora circadian system. Science 289:107–110

    CAS  PubMed  Google Scholar 

  • Lewis M, Feldman JF (1997) Evolution of the frequency clock locus in ascomycete fungi. Mol Biol Evol 13:1233–1241

    Google Scholar 

  • Lewis M, Morgan L, Feldman JF (1997) Cloning of (frq)clock gene homologs from the Neurospora sitophila and Neurospora tetrasperma, Chromocrea spinulosa and Leptosphaeria australiensis. Mol Gen Genet 253:401–414

    CAS  PubMed  Google Scholar 

  • Lewis ZA, Correa A, Schwerdtfeger C, Link KL, Xie X, Gomer RH, Thomas T, Ebbole DJ, Bell-Pedersen D (2002) Overexpression of White Collar-1 (WC-1) activates circadian clock-associated genes, but is not sufficient to induce most light-regulated gene expression in Neurospora crassa. Mol Microbiol 45:917–931

    Article  CAS  PubMed  Google Scholar 

  • Linden H, Macino G (1997) White collar-2, a partner in blue-light signal transduction, controlling expression of light-regulated genes in Neurospora crassa. EMBOJ 16:98–109

    CAS  Google Scholar 

  • Linden H, Ballario P, Macino G (1997) Blue light regulation in Neurospora crassa. Fungal Genet Biol 22:141–150

    Article  CAS  PubMed  Google Scholar 

  • Linden H, Ballario P, Arpaia G, Macino G (1999) Seeing the light: news in Neurospora blue light signal transduction. Adv Genet 41:35–54

    CAS  PubMed  Google Scholar 

  • Lindgren KM (1994) Characterization of ccg-1, a clock-controlled gene of Neurospora crassa. PhD Thesis, Dartmouth Medical School, Hanover, NH

    Google Scholar 

  • Liu Y (2003) Molecular mechanisms of entrainment in the Neurospora circadian clock. J Biol Rhythms 18:195–205

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Garceau N, Loros JJ, Dunlap JC (1997) Thermally regulated translational control mediates an aspect of temperature compensation in the Neurospora circadian clock. Cell 89:477–486

    CAS  PubMed  Google Scholar 

  • Liu Y, Merrow M, Loros JJ, Dunlap JC (1998) How temperature changes reset a circadian oscillator. Science 281:825–829

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Loros J, Dunlap JC (2000) Phosphorylation of the Neurospora clock protein FREQUENCY determines its degradation rate and strongly influences the period length of the circadian clock. Proc Natl Acad Sci USA 97:234–239

    CAS  PubMed  Google Scholar 

  • Loros JJ (1984) Studies on frq-9, a recessive circadian clock mutant of Neurospora crassa. PhD Thesis, University of California Santa Cruz, Santa Cruz, CA

    Google Scholar 

  • Loros JJ, Dunlap JC (2001) Genetic and molecular analysis of circadian rhythms in Neurospora. Annu Rev Physiol 63:757–794

    Article  CAS  PubMed  Google Scholar 

  • Loros JJ, Richman A, Feldman JF (1986) A recessive circadian clock mutant at the frq locus in Neurospora crassa. Genetics 114:1095–1110

    CAS  PubMed  Google Scholar 

  • Loros JJ, Denome SA, Dunlap JC (1989) Molecular cloning of genes under the control of the circadian clock in Neurospora. Science 243:385–388

    CAS  PubMed  Google Scholar 

  • Luo C, Loros JJ, Dunlap JC (1998) Nuclear localization is required for function of the essential clock protein Frequency. EMBO J 17:1228–1235

    Article  CAS  PubMed  Google Scholar 

  • Martens CL, Sargent ML (1974) Conidiation rhythms of nucleic acid metabolism in Neurospora crassa. J Bacteriol 117:1210–1215

    CAS  PubMed  Google Scholar 

  • McClintock B (1950) The origin and behavior of mutable loci in maize. Proc Natl Acad Sci USA 36(6):344–355

    CAS  PubMed  Google Scholar 

  • McNally M, Free S (1988) Isolation and characterization of a Neurospora glucose repressible gene. Curr Genet 14:545–551

    Article  CAS  PubMed  Google Scholar 

  • Mehra A, Morgan L, Bell-Pedersen D, Loros J, Dunlap JC (2002) Watching the Neurospora clock tick. In: Abstr Vol Conf Society for Research on Biological Rhythms, 22–25 May 2002, Amelia Island, FL, pp 27

    Google Scholar 

  • Merrow M, Dunlap JC (1994) Intergeneric complementation of a circadian rhythmicity defect: phylogenetic conservation of the 989 amino acid open reading frame in the clock gene frequency. EMBO J 13:2257–2266

    CAS  PubMed  Google Scholar 

  • Merrow M, Garceau N, Dunlap JC (1997) Dissection of a circadian oscillation into discrete domains. Proc Natl Acad Sci USA 94:3877–3882

    Article  CAS  PubMed  Google Scholar 

  • Merrow M, Franchi L, Dragovic Z, Gorl M, Johnson J, Brunner M, Macino G, Roenneberg T (2001) Circadian regulation of the light input pathway inNeurospora crassa. EMBO J 20:307–315

    Article  CAS  PubMed  Google Scholar 

  • Morgan LW, Greene AV, Bell-Pedersen D (2003) Circadian and light-induced expression of luciferase in Neurospora crassa. Fungal Genet Biol 38:327–332

    Article  CAS  PubMed  Google Scholar 

  • Nakashima H (1981) A liquid culture system for the biochemical analysis of the circadian clock of Neurospora. Plant Cell Physiol 22:231–238

    CAS  Google Scholar 

  • Nelson MA, Kang S, Braun E, Crawford M, Dolan P, Leonard P, Mitchell J, Armijo A, Bean L, Blueyes E et al. (1997) Expressed sequences form conidial, mycelial, and sexual stages of Neurospora. Fungal Genet Biol 21:348–363

    Article  CAS  PubMed  Google Scholar 

  • Ninomiya Y, Suzuki K, Ishii C, Inoue H (2004) Highly efficient gene replacements in Neurospora strains deficient for nonhomologous end-joining. Proc Natl Acad Sci USA 101:12248–12253

    Article  CAS  PubMed  Google Scholar 

  • Nowrousian M, Duffield GE, Loros JJ, Dunlap JC (2003) The frequency gene is required for temperature-dependent regulation of many clock-controlled genes in Neurospora crassa. Genetics 164:922–933

    Google Scholar 

  • Nowrousian M, Wurtz C, Poggeler S, Kuck U (2004) Comparative sequence analysis of Sordaria macrospora and Neurospora crassa as a means to improve genome annotation. Fungal Genet Biol 41:285–292

    Article  CAS  PubMed  Google Scholar 

  • Nowrousian M, Ringelberg C, Dunlap J, Loros J, Kück U (2005) Cross-species microarray hybridization to identify developmentally regulated genes in the filamentous fungus Sordaria macrospora. Mol Genet Genomics 273:137–149

    Article  CAS  PubMed  Google Scholar 

  • Onai K, Nakashima H (1997) Mutation of the cys-9 gene, which encodes thioredoxin reductase, affects the circadian conidiation rhythm in Neurospora crassa. Genetics 146:101–110

    CAS  PubMed  Google Scholar 

  • Perkins DD (1988) Photoinduced carotenoid synthesis in perithecial wall tissue of Neurospora crassa. Fungal Genet Newslett 35:38–39

    Google Scholar 

  • Perlman J, Nakashima H, Feldman J (1981) Assay and characteristics of circadian rhythmicity in liquid cultures of Neurospora crassa. Plant Physiol 67:404–407

    Google Scholar 

  • Potapova T, Levina N, Belozerskaya T, Kritsky M, Chailakhian L (1984) Investigation of electrophysiological responses of Neurospora crassa to blue light. Arch Microbiol 137:262–265

    Article  CAS  Google Scholar 

  • Price JL, Blau J, Rothenfluh A, Adodeely M, Kloss B, Young MW (1998) double-time is a new Drosophila clock gene that regulates PERIOD protein accumulation. Cell 94:83–95

    Article  CAS  PubMed  Google Scholar 

  • Ramsdale M, Lakin-Thomas PL (2000) sn-1,2-Diacylglycerol levels in the fungus Neurospora crassa display circadian rhythmicity. J Biol Chem 275:27541–27550

    CAS  PubMed  Google Scholar 

  • Rensing L, Bos A, Kroeger J, Cornelius G(1987)Possible link between circadian rhythm and heat shock response in Neurospora crassa. Chronobiol Int 4:543–549

    CAS  PubMed  Google Scholar 

  • Roeder PE, Sargent ML, Brody S (1982) Circadian rhythms in Neurospora crassa: oscillations in fatty acids. Biochemistry 21:4909–4916

    Article  CAS  PubMed  Google Scholar 

  • Ruoff P, Vinsjevik M, Mohsenzadeh S, Rensing L (1999) The Goodwin Oscillator: on the importance of degradation reaction in the circadian clock. J Biol Rhythms 14:469–479

    Article  CAS  PubMed  Google Scholar 

  • Ryan FJ, Beadle GW, Tatum EL (1943) The tube method for measuring the growth rate of Neurospora. Am J Bot 30:784–799

    Google Scholar 

  • Sargent ML, Briggs WR(1967) The effect of light on a circadian rhythm of conidiation in Neurospora. Plant Physiol 42:1504–1510

    Google Scholar 

  • Sargent ML, Briggs WR, Woodward DO (1966) The circadian nature of a rhythm expressed by an invertaseless strain of Neurospora crassa. Plant Physiol 41:1343–1349

    CAS  PubMed  Google Scholar 

  • Schwerdtfeger C, Linden H (2003) VIVID is a flavoprotein and serves as a fungal blue light photoreceptor for photoadaptation. EMBO J 22:4846–4855

    Article  CAS  PubMed  Google Scholar 

  • Selker EU (1990) Premeiotic instability of repeated sequences in Neurospora crassa. Annu Rev Genet 24:579–613

    Article  CAS  PubMed  Google Scholar 

  • Selker EU, Cambareri EB, Jensen BC, Haack KR (1987) Rearrangement of duplicated DNA in specialized cells of Neurospora. Cell 51:741–752

    Article  CAS  PubMed  Google Scholar 

  • Shigeyoshi Y, Taguchi K, Yamamoto S, Takeida S, Yan L, Tei H, Moriya S, Shibata S, Loros JJ, Dunlap JC et al. (1997) Light-induced resetting of a mammalian circadian clock is associated with rapid induction of the mPer1 transcript. Cell 91:1043–1053

    Article  CAS  PubMed  Google Scholar 

  • Shinohara M, Loros JJ, Dunlap JC (1998) Glyceraldehyde-3-phosphate dehydrogenase is regulated on a daily basis by the circadian clock. J Biol Chem 273:446–452

    Article  CAS  PubMed  Google Scholar 

  • Shinohara ML, Correa A, Bell-Pedersen D, Loros JJ, Dunlap JC (2002) The Neurospora crassa clock-controlled gene-9 (ccg-9) encodes a novel form of trehalose synthase required for circadian-regulated conidiation. Eukaryot Cell 1:33–43

    Article  CAS  PubMed  Google Scholar 

  • Shiu PKT, Raju N, Zickler D, Metzenberg R (2001) Meiotic silencing of unpaired DNA. Cell 107:905–916

    Article  CAS  PubMed  Google Scholar 

  • Siegel RW, Matsuyama S, Urey J (1968) Induced macroconidia formation in Neurospora crassa. Experiencia 24:1179–1181

    CAS  Google Scholar 

  • Simpson A, Roger AJ (2002) Eukaryotic evolution: getting to the root of the problem. Curr Biol 12:R691–R693

    Article  CAS  PubMed  Google Scholar 

  • Sogin ML (1994) The origin of eukaryotes and evolution into major kingdoms. In: Bengston S (ed) Early life on earth. Nobel Symposium no 84. Columbia University Press, New York, pp 181–192

    Google Scholar 

  • Talbot N (1999) Fungal biology. Coming up for air and sporulation. Nature 398:295–296

    Article  CAS  PubMed  Google Scholar 

  • Talora C, Franchi L, Linden H, Ballario P, Macino G (1999) Role of a white collar-1-white collar-2 complex in blue-light signal transduction. EMBO J 18:4961–4968

    Article  CAS  PubMed  Google Scholar 

  • Wessels JG (1999) Fungi in their own right. Fungal Genet Biol 27:134–145

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Cheng P, Zhi G, Liu Y (2001) Identification of a calcium/calmodulin-dependent protein kinase that phosphorylates the Neurospora circadian clock protein Frequency. J Biol Chem 276:41064–41072

    CAS  PubMed  Google Scholar 

  • Yang Y, Cheng P, Liu Y (2002) Regulation of the Neurospora circadian clock by casein kinase II. Genes Dev 16:994–1006

    Article  CAS  PubMed  Google Scholar 

  • Zhu H, Nowrousian M, Kupfer D, Colot H, Berrocal-Tito G, Lai H, Bell-Pedersen D, Roe B, Loros JJ, Dunlap JC (2001) Analysis of expressed sequence tags from two starvation, time-of-day-specific libraries of Neurospora crassa reveals novel clock-controlled genes. Genetics 157:1057–1065

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Loros, J., Dunlap, J. (2006). Circadian Rhythms, Photobiology and Functional Genomics in Neurospora. In: Brown, A.J. (eds) Fungal Genomics. The Mycota, vol 13. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-30809-1_4

Download citation

Publish with us

Policies and ethics