Skip to main content

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. Dachille and A. Kaufman. Incremental Triangle Voxelization. In Proc. Graphics Interface, pp. 205–212, May 2000.

    Google Scholar 

  2. E. R. Dougherty and C. R. Giardina. Matrix Structured Image Processing, chapter Topological Operations, pp. 140–148. Prentice-Hall, 1987.

    Google Scholar 

  3. D. Ebert and P. Rheingans. Volume Illustration: Non-Photorealistic Rendering of Volume Models. In Proc. IEEE Visualization, pp. 195–202, 2000.

    Google Scholar 

  4. S. Frisken, R. Perry, A. Rockwood, and T. Jones. Adaptively Sampled Distance Fields: A General Representation of Shape for Computer Graphics. In Proc. SIGGRAPH, pp. 249–254, 2000.

    Google Scholar 

  5. S. Frisken Gibson. Using Distance Maps for Accurate Surface Representation in Sampled Volumes. In Symposium on Volume Visualization, pp. 23–30, 1998.

    Google Scholar 

  6. M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active Contour Models. International Journal of Conputer Vision, 1(4):321–331, 1988.

    Google Scholar 

  7. G. Kindlmann and J. Durkin. Semi-Automatic Generation of Transfer Functions for Direct Volume Rendering. In Proc. of Symposium on Volume Visualization, pp. 79–86, 1998.

    Google Scholar 

  8. J. Kniss, G. Kindlmann, and C. Hansen. Multi-Dimensional Transfer Functions for Interactive Volume Rendering. IEEE Trans. on Visualization and Computer Graphics, pp. 270–285, 2002.

    Google Scholar 

  9. Kevin Kreeger and Arie Kaufman. Interactive Volume Segmentation with the PAVLOV Architecture. In IEEE Parallel Visualization and Graphics Symposium, pp. 61–68, October 1999.

    Google Scholar 

  10. J. Krüger and R. Westermann. Acceleration Techniques for GPU-Based Volume Rendering. In Proc. IEEE Visualization, pp. 287–292, 2003.

    Google Scholar 

  11. S. Lakare and A. Kaufman. Anti-Aliased Volume Extraction. In Data Visualization 2003, Proc. of Eurographics/IEEE TCVG Visualization Symposium, pp. 113–122, May 2003.

    Google Scholar 

  12. A. Lefohn, J. Kniss, C. Hansen, and R. Whitaker. Interactive Deformation and Visualization of Level Set Surfaces Using Graphics Hardware. In Proc. IEEE Visualization, pp. 75–82, 2003.

    Google Scholar 

  13. J. Ming, R. Machiraju, and D. Thompson. A Novel Approach to Vortex Core Detection. In Proc. of Euro./IEEE Visualization Symp., pp. 217–225, 2002.

    Google Scholar 

  14. V. Pekar, R. Wiemker, and D. Hempel. Fast Detection of Meaningful Isosurfaces for Volume Data Visualization. In Proc. IEEE Visualization, pp. 223–230, 2001.

    Google Scholar 

  15. W. K. Pratt. Digital Image Processing. A Wiley-Interscience, second edition, 1991.

    Google Scholar 

  16. D. Prewer and L. J. Kitchen. Soft Image Segmentation by Weighted Linked Pyramid. Pattern Recognition Letters, 22(2):123–132, 2001.

    Article  Google Scholar 

  17. K.-L. Ma R. Huang, P. McCormick, and W. Ward. Visualizaing Industrial CT Volume Data for Nondestructive Testing Applications. In Proc. IEEE Visualization, pp. 547–554, 2003.

    Google Scholar 

  18. C. Rezk-Salama, K. Engel, M. Bauer, G. Greiner, and T. Ertl. Interactive Volume Rendering on Standard PC Graphics Hardware Using Multi-Textures and Multi-Stage-Rasterization. In Proc. SIGGRAPH/Eurographics Workshop on Graphics Hardware, pp. 109–118, 2000.

    Google Scholar 

  19. Y. Sato, C. Westin, A. Bhalerao, S. Nakajima, N. Shiraga, S Tamura, and R. Kikinis. Tissue Classification Based on 3D Local Intensity Structures for Volume Rendering. IEEE Tran. on Visualization and Computer Graphics, 6(2):160–180, 2000.

    Google Scholar 

  20. D. Silver and X. Wang. Tracking Scalar Features in Unstructured Datasets. In Proc. IEEE Visualization, pp. 79–86, 1998.

    Google Scholar 

  21. M. Sramek and A. E. Kaufman. Alias-Free Voxelization of Geometric Objects. IEEE Trans. on Visualization and Computer Graphics, 5(3):251–267, July 1999.

    Google Scholar 

  22. Ikuko Takanashi, Shigeru Muraki, Akio Doi, and Arie Kaufman. 3D Active Net — 3D Volume Extraction. Journal of the Institute of Image Information and Television Engineers, 51(12):2097–2106, 1997.

    Google Scholar 

  23. S. Tenginakai, J. Lee, and R. Machiraju. Salient Iso-Surface Detection with Model-Independent Statistical Signatures. In Proc. IEEE Visualization, pp. 231–238, 2001.

    Google Scholar 

  24. U. Tiede, T. Schiemann, and K. H. Höhne. High Quality Rendering of Attributed Volume Data. In Proc. IEEE Visualization, pp. 255–262, 1998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mueller, K., Lakare, S., Kaufman, A. (2006). Volume Exploration Made Easy Using Feature Maps. In: Bonneau, GP., Ertl, T., Nielson, G.M. (eds) Scientific Visualization: The Visual Extraction of Knowledge from Data. Mathematics and Visualization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-30790-7_9

Download citation

Publish with us

Policies and ethics