Skip to main content

A Practical System for Constrained Interactive Walkthroughs of Arbitrarily Complex Scenes

  • Conference paper
Book cover Scientific Visualization: The Visual Extraction of Knowledge from Data

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

  • 1716 Accesses

Abstract

Complex renderings of synthetic scenes or virtual environments, once deemed impossible for consumer rendering, are becoming available for modern computer architecture. These renderings, due to their high-quality image synthesis, can take minutes to hours to render. Our work focuses on using Image-Based Rendering (IBR) techniques to manage and explore large and complex datasets and virtual scenes. The key idea for this research is to pre-process the scene and render key viewpoints on pre-selected paths inside the scene. We present new techniques to reconstruct approximations to any view along the path, which allows the user to roam around inside the virtual environments with interactive frame rates. We have implemented a pipeline for generating the sampled key viewpoints and reconstructing panoramic-based IBR models. Our implementation includes efficient two-step caching and pre-fetching algorithms, mesh simplification schemes and texture removal and database compression techniques. The system has been successfully tested on several scenes and satisfactory results have been obtained. An analysis and comparison of errors is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andelson, E. H., Bergen, J. R.: The plenoptic Function and the Elements of Early Vision. In: Landy, M., Movshon, A. (ed) Computational Models of Visual Processing. The MIT Press, Cambridge Massachusetts (1991)

    Google Scholar 

  2. Chang, C., Bishop, G., Lastra, A.: LDI Tree: A Hierarchical Representation for Image-Based Rendering. Proc. SIGGRAPH, 291–298 (1999)

    Google Scholar 

  3. Chen, S.: Quick Time VR — An Image-Based Approach to Virtual Environment Navigation. Proc. SIGGRAPH, 29–38 (1995)

    Google Scholar 

  4. Choi, J., Shin, Y.: Efficient Image-Based Rendering of Volume Data. Proc. Pacific Graphics, 70–78 (1998)

    Google Scholar 

  5. Cohen-Or, D., Mann, Y., Fleishman, S.: Deep Compression for Streaming Texture Intensive Animations. Proc. SIGGRAPH, 261–268 (1999)

    Google Scholar 

  6. Danskin, J., Hanrahan, P.: Fast Algorithms for Volume Raytracing. Proc. Workshop Volume Visualization, 91–98 (1992)

    Google Scholar 

  7. Darsa, L., Costa, B., Varshney, A.: Navigating Static Environments Using Image-Space Simplification and Morphing. Symposium on Interactive 3D Graphics, 25–34 (1997)

    Google Scholar 

  8. Debevee, P., Yu, Y., Borshukov, G.: Efficient View Dependent Image-Based Rendering with Projective Texture Mapping. In 9th Eurographics Rendering Workshop, (1998)

    Google Scholar 

  9. Decoret, X., Schaufler, G., Sillion, F., Dorsey, J.: Multilayered Imposters for Accelerated Rendering. Proc. Eurographics, 145–156 (1999)

    Google Scholar 

  10. Durand, F., Drettakis, G., Thollot, J., Puech, C.: Conservative Visibility Pre-processing Using Extended Projections. Proc. SIGGRAPH, 239–248 (2000)

    Google Scholar 

  11. Gortler, S., Grzeszczuk, R., Szeliski, R., Cohen, M.: The Lumigraph. Proc SIGGRAPH, 43–54 (1996)

    Google Scholar 

  12. Levoy, M., Hanrahan, P.: Light Field Rendering. Proc. SIGGRAPH, 54–61 (1996)

    Google Scholar 

  13. Mark, W., McMillan, L., Bishop, G.: Post-Rendering 3D Warping. Symposium on Interactive 3D Graphics, 7–16 (1997)

    Google Scholar 

  14. McMillan, L., Bishop, G.: Plenoptic Modeling: An Image-Based Rendering System. Proc. SIGGRAPH, 39–46 (1995)

    Google Scholar 

  15. Mueller, K., Shareef, N., Huang, J., Crawfis, R.: IBR-Assisted Volume Rendering. Late Breaking Hot Topic IEEE Visualization, 5–8 (1999)

    Google Scholar 

  16. Mueller, K., Shareef, N., Huang, J., Crawfis, R.: High-quality Splatting on Rectilinear Grids With Efficient Culling of Occluded Voxels. IEEE Transactions on Visualization and Computer Graphics, 5,2, 116–134 (1999)

    Article  Google Scholar 

  17. Preparata, F., Shamos, M.: Computational Geometry, An Introduction. Springer-Verlag New York Inc (1985)

    Google Scholar 

  18. Qu, H., Wan, M., Qin, J., Kaufman, A.: Image Based Rendering With Stable Frame Rates. Proc. IEEE Visualization, 251–258 (2000)

    Google Scholar 

  19. Rademacher, P., Bishop, G., Multiple-Center-of-Projection Images. Proc. SIGGRAPH, 199–206 (1998)

    Google Scholar 

  20. Sander, P., Gu, X., Gortler, S., Hoppe, H., Snyder, J., Silhouette Clipping. Proc. SIGGRAPH, 327–334 (2000)

    Google Scholar 

  21. Shade, J., Gortler, S., He, L., Szeliski, R., Layered Depth Images. Proc. SIGGRAPH, 231–242 (1998)

    Google Scholar 

  22. Schroeder, W., Zarge, J., Lorensen, W.: Decimation of Triangle Meshes In: Computer Graphics, 26,2, 65–70 (1992)

    Google Scholar 

  23. Shum, H., He, L., Rendering With Concentric Mosaics. Proc. SIGGRAPH, 299–306 (1999)

    Google Scholar 

  24. Szeliski, R., Shum, H., Creating Full View Panoramic image Mosaics and Texture-Mapped Models. Proc. SIGGRAPH, 251–258 (1997)

    Google Scholar 

  25. Ward, G., The RADIANCE Lighting Simulation and Rendering System. Proc. SIGGRAPH, 459–72 (1994)

    Google Scholar 

  26. Yang, L., Crawfis, R., Rail-Track Viewer, an Image Based Virtual Walkthrough System. Eurographics Workshop on Virtual Environment, 37–46 (2002)

    Google Scholar 

  27. Zhang, H., Manocha, D., Hudson, T., Hoff, K., Visibility culling using hierarchical occlusion maps. Proc. SIGGRAPH, 77–88 (1997)

    Google Scholar 

  28. http://www.povray.org

    Google Scholar 

  29. http://www.irtc.org/stills/1998-06-30.html

    Google Scholar 

  30. http://www.irtc.org/stills/1998-04-30.html

    Google Scholar 

  31. http://www.irtc.org/stills/1999-02-28.html

    Google Scholar 

  32. http://www.kitware.com/vtk

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yang, L., Crawfis, R. (2006). A Practical System for Constrained Interactive Walkthroughs of Arbitrarily Complex Scenes. In: Bonneau, GP., Ertl, T., Nielson, G.M. (eds) Scientific Visualization: The Visual Extraction of Knowledge from Data. Mathematics and Visualization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-30790-7_20

Download citation

Publish with us

Policies and ethics