Skip to main content

On the Convexification of Unstructured Grids from a Scientific Visualization Perspective

  • Conference paper
Scientific Visualization: The Visual Extraction of Knowledge from Data

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

  • 1730 Accesses

Summary

Unstructured grids are extensively used in modern computational solvers and, thus, play an important role in scientific visualization. They come in many different types. One of the most general types are non-convex meshes, which may contain voids and cavities. The lack of convexity presents a problem for several algorithms, often causing performance issues.

One way around the complexity of non-convex methods is to convert them into convex ones for visualization purposes. This idea was originally proposed by Peter Williams in his seminal paper on visibility ordering. He proposed to fill the volume between the convex hull of the original mesh, and its boundary with “imaginary” cells. In his paper, he sketches algorithms for potentially performing this operation, but stops short of implementing them.

This paper discusses the convexification problem and surveys the relevant literature. We hope it is useful for researchers interested in the visualization of unstructured grids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. de Berg, M. Overmars, and O. Schwarzkopf. Computing and verifying depth orders. SIAM J. Comput., 23:437–446, 1994.

    MathSciNet  Google Scholar 

  2. M. Bern. Triangulations and mesh generation. In J. E. Goodman and J. O’Rourke, editors, Handbook of Discrete and Computational Geometry (2nd Edition), chapter 25, pp. 563–582. Chapman & Hall/CRC, Boca Raton, FL, 2004.

    Google Scholar 

  3. M. Bern, D. Dobkin, and D. Eppstein. Triangulating polygons without large angles. Internat. J. Comput. Geom. Appl., 5:171–192, 1995.

    MathSciNet  Google Scholar 

  4. M. Bern and D. Eppstein. Mesh generation and optimal triangulation. In D.-Z. Du and F. K. Hwang, editors, Computing in Euclidean Geometry, volume 1 of Lecture Notes Series on Computing, pp. 23–90. World Scientific, Singapore, 1992.

    Google Scholar 

  5. M. Bern and P. Plassmann. Mesh generation. In J.-R. Sack and J. Urrutia, editors, Handbook of Computational Geometry, pp. 291–332. Elsevier Science Publishers B.V. North-Holland, Amsterdam, 2000.

    Google Scholar 

  6. B. Chazelle. Triangulating a simple polygon in linear time. Discrete Comput. Geom., 6(5):485–524, 1991.

    MATH  MathSciNet  Google Scholar 

  7. B. Chazelle and D. P. Dobkin. Optimal convex decompositions. In G. T. Toussaint, editor, Computational Geometry, pp. 63–133. North-Holland, Amsterdam, Netherlands, 1985.

    Google Scholar 

  8. B. Chazelle, H. Edelsbrunner, L. Guibas, J. Hershberger, R. Seidel, and M. Sharir. Selecting heavily covered points. SIAM J. Comput., 23:1138–1151, 1994.

    Article  MathSciNet  Google Scholar 

  9. B. Chazelle, H. Edelsbrunner, L. J. Guibas, R. Pollack, R. Seidel, M. Sharir, and J. Snoeyink. Counting and cutting cycles of lines and rods in space. Comput. Geom. Theory Appl., 1:305–323, 1992.

    Google Scholar 

  10. B. Chazelle and L. Palios. Triangulating a non-convex polytope. Discrete Comput. Geom., 5:505–526, 1990.

    Article  MathSciNet  Google Scholar 

  11. L. P. Chew. Constrained Delaunay triangulations. Algorithmica, 4:97–108, 1989.

    MATH  MathSciNet  Google Scholar 

  12. D. Cohen-Steiner, E. Colin de Verdière, and M. Yvinec. Conforming Delaunay triangulations in 3d. In Proc. 18th Annu. ACM Sympos. Comput. Geom., 2002.

    Google Scholar 

  13. J. L. Comba, J. T. Klosowski, N. Max, J. S. Mitchell, C. T. Silva, and P. Williams. Fast polyhedral cell sorting for interactive rendering of unstructured grids. In Computer Graphcs Forum, volume 18, pp. 367–376, 1999.

    Google Scholar 

  14. L. De Floriani and E. Puppo. A survey of constrained Delaunay triangulation algorithms for surface representaion. In G. G. Pieroni, editor, Issues on Machine Vision, pp. 95–104. Springer-Verlag, New York, NY, 1989.

    Google Scholar 

  15. H. Edelsbrunner. Algorithms in Combinatorial Geometry, volume 10 of EATCS Monographs on Theoretical Computer Science. Springer-Verlag, Heidelberg, West Germany, 1987.

    Google Scholar 

  16. H. Edelsbrunner. Geometry and Topology for Mesh Generation. Cambridge, 2001.

    Google Scholar 

  17. S. Fortune. Voronoi diagrams and Delaunay triangulations. In J. E. Goodman and J. O’Rourke, editors, Handbook of Discrete and Computational Geometry (2nd Edition), chapter 23, pp. 513–528. Chapman & Hall/CRC, Boca Raton, FL, 2004.

    Google Scholar 

  18. H. Fuchs, Z. M. Kedem, and B. Naylor. On visible surface generation by a priori tree structures. Comput. Graph., 14(3):124–133, 1980. Proc. SIGGRAPH’ 80.

    Google Scholar 

  19. M. P. Garrity. Raytracing irregular volume data. Computer Graphics (San Diego Workshop on Volume Visualization), 24(5):35–40, Nov. 1990.

    Google Scholar 

  20. C. Hoffmann. Geometric and Solid Modeling. Morgan-Kaufmann, San Mateo, CA, 1989.

    Google Scholar 

  21. J. M. Keil. Polygon decomposition. In J.-R. Sack and J. Urrutia, editors, Handbook of Computational Geometry, pp. 491–518. Elsevier Science Publishers B.V. North-Holland, Amsterdam, 2000.

    Google Scholar 

  22. M. Kraus and T. Ertl. Cell-projection of cyclic meshes. In IEEE Visualization 2001, pp. 215–222, ?Oct. 2001.

    Google Scholar 

  23. M. Kraus and T. Ertl. Simplification of Nonconvex Tetrahedral Meshes. In Farin, G. and Hagen, H. and Hamann, B., editor, Hierarchical and Geometrical Methods in Scientific Visualization, pp. 185–196. Springer-Verlag, 2002.

    Google Scholar 

  24. M. Murphy, D. M. Mount, and C. W. Gable. A point-placement strategy for conforming Delaunay tetrahedralization. In Proc. 11th ACM-SIAM Sympos. Discrete Algorithms, pp. 67–74, 2000.

    Google Scholar 

  25. G. M. Nielson, H. Hagen, and H. Müller. Scientific Visualization: Overviews, Methodologies, and Techniques. IEEE Computer Society Press, Washington, DC, 1997.

    Google Scholar 

  26. A. Okabe, B. Boots, and K. Sugihara. Spatial Tessellations: Concepts and Applications of Voronoi Diagrams. John Wiley & Sons, Chichester, UK, 1992.

    Google Scholar 

  27. J. Ruppert and R. Seidel. On the difficulty of triangulating three-dimensional non-convex polyhedra. Discrete Comput. Geom., 7:227–253, 1992.

    Article  MathSciNet  Google Scholar 

  28. S. Schirra. Robustness and precision issues in geometric computation. In J.-R. Sack and J. Urrutia, editors, Handbook of Computational Geometry, chapter 14, pp. 597–632. Elsevier Science Publishers B.V. North-Holland, Amsterdam, 2000.

    Google Scholar 

  29. R. Seidel. Constrained Delaunay triangulations and Voronoi diagrams with obstacles. Technical Report 260, IIG-TU Graz, Austria, 1988.

    Google Scholar 

  30. J. R. Shewchuk. A condition guaranteeing the existence of higher-dimensional constrained Delaunay triangulations. In Proc. 14th Annu. ACM Sympos. Comput. Geom., pp. 76–85, 1998.

    Google Scholar 

  31. J. R. Shewchuk. Constrained Delaunay tetrahedralizations, bistellar flips, and provably good boundary recovery. Talk slides; available from author’s web page.

    Google Scholar 

  32. J. R. Shewchuk. Lecture notes on Delaunay mesh generation. Technical report, Department of Electrical Engineering and Computer Science, University of California at Berkeley, 1999.

    Google Scholar 

  33. J. R. Shewchuk. Sweep algorithms for constructing higher-dimensional constrained Delaunay triangulations. In Proc. 16th Annu. ACM Sympos. Comput. Geom., pp. 350–359, 2000.

    Google Scholar 

  34. J. R. Shewchuk. Updating and constructing constrained Delaunay and constrained regular triangulations by flips. In Proc. 19th Annu. ACM Sympos. Comput. Geom., pp. 181–190, 2003.

    Google Scholar 

  35. P. Shirley and A. Tuchman. A polygonal approximation to direct scalar volume rendering. In San Diego Workshop on Volume Visualization, volume 24 of Comput. Gr, pp. 63–70, Dec. 1990.

    Google Scholar 

  36. C. T. Silva, J. S. Mitchell, and P. L. Williams. An exact interactive time visibility ordering algorithm for polyhedral cell complexes. In 1998 Volume Visualization Symposium, pp. 87–94, Oct. 1998.

    Google Scholar 

  37. D. Speray and S. Kennon. Volume probes: Interactive data exploration on arbitrary grids. Computer Graphics (San Diego Workshop on Volume Visualization), 24(5):5–12, November 1990.

    Google Scholar 

  38. C. Stein, B. Becker, and N. Max. Sorting and hardware assisted rendering for volume visualization. 1994 Symposium on Volume Visualization, pp. 83–90, October 1994. ISBN 0-89791-741-3.

    Google Scholar 

  39. N. P. Weatherill and O. Hassan. Efficient three-dimensional Delaunay triangulation with automatic point creation and imposed boundary constraints. International Journal for Numerical Methods in Engineering, 37:2005–2039, 1994.

    Google Scholar 

  40. M. Weiler, M. Kraus, M. Merz, and T. Ertl. Hardware-Based Ray Casting for Tetrahedral Meshes. In Proceedings of IEEE Visualization 2003, pp. 333–340, 2003.

    Google Scholar 

  41. P. L. Williams. Visibility ordering meshed polyhedra. ACM Transaction on Graphics, 11(2):103–125, Apr. 1992.

    MATH  Google Scholar 

  42. C. Yap. Towards exact geometric computation. Comput. Geom. Theory Appl., 7(1):3–23, 1997.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Comba, J.L., Mitchell, J.S., Silva, C.T. (2006). On the Convexification of Unstructured Grids from a Scientific Visualization Perspective. In: Bonneau, GP., Ertl, T., Nielson, G.M. (eds) Scientific Visualization: The Visual Extraction of Knowledge from Data. Mathematics and Visualization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-30790-7_2

Download citation

Publish with us

Policies and ethics