Skip to main content

Protein Nanomechanics — as Studied by AFM Single-Molecule Force Spectroscopy

  • Chapter
Advanced Techniques in Biophysics

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ainavarapu SRK, Li L, Badilla CL, Fernandez JM (2005) Ligand binding modulates the mechanical stability of dihydrofolate reductase. Biophys J 89:3337–3344

    Google Scholar 

  • Alberts B (1998) The cell as a collection of protein machines: preparing the next generation of molecular biologists. Cell 92:291–294

    Google Scholar 

  • Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002) The molecular biology of the cell, 4th edn. Garland Science, New York, p 1103

    Google Scholar 

  • Albrecht C, Blank K, Lalic-Multhaler M, Hirler S, Mai T, Gilbert I, Schiffmann S, Bayer T, Clausen-Schaumann H, Gaub HE (2003) DNA: A programmable force sensor. Science 301:367–370

    ADS  Google Scholar 

  • Allen S, Chen X, Davies J, Davies MC, Dawkes AC, Edwards JC, Roberts CJ, Sefton J, Tendler SJ, Williams PM (1997) Detection of antigen-antibody binding events with the atomic force microscope. Biochemistry 36:7457–7463

    Google Scholar 

  • Allen S, Davies J, Davies MC, Dawkes AC, Roberts CJ, Tendler SJ, Williams PM (1999) The influence of epitope availability on atomic-force microscope studies of antigen-antibody interactions. Biochem J 341:173–178

    Google Scholar 

  • Anfinsen CB, Haber E, Sela M, White FH (1961) The kinetics of formation of native ribonuclease during oxidation of the reduced polypeptide chain. Proc Natl Acad Sci USA 47:1309–1314

    ADS  Google Scholar 

  • Appleman JR, Prendergast N, Delcamp TJ, Freisheim JH, Blakley RL (1988) Kinetics of the formation and isomerization of methotrexate complexes of recombinant human dihydrofolate reductase. J Biol Chem 263:10304–10313

    Google Scholar 

  • Ashkin A (1970) Acceleration and trapping of particles by radiation pressure. Phys Rev Lett 24:156–159

    ADS  Google Scholar 

  • Bartels FW, Baumgarth B, Anselmetti D, Ros R, Becker A (2003) Specific binding of the regulatory protein ExpG to promoter regions of the galactoglucan biosynthesis gene cluster of Sinorhizobium meliloti — a combined molecular biology and force spectroscopy investigation. J Struct Biol 143:145–152

    Google Scholar 

  • Baumgartner W, Hinterdorfer P, Ness W, Raab A, Vestweber D, Schindler H, Drenckhahn D (2000) Cadherin interaction probed by atomic force microscopy. Proc Natl Acad Sci USA 97:4005–4010

    ADS  Google Scholar 

  • Bell GI (1978) Models for the specific adhesion of cells to cells. Science 200:618–627

    ADS  Google Scholar 

  • Benoit M, Gaub HE (2002) Measuring cell adhesion forces with the atomic force microscope at the molecular level. Cells Tissues Organs 172:174–189

    Google Scholar 

  • Best RB, Clarke J (2002) What can atomic force microscopy tell us about protein folding? Chem Commun 7:183–192

    Google Scholar 

  • Best RB, Hummer G (2005) Comment on “Force-clamp spectroscopy monitors the folding trajectory of a single protein”. Science 308:49

    Google Scholar 

  • Best RB, Li B, Steward A, Daggett V, Clarke J (2001) Can non-mechanical proteins withstand force? Stretching barnase by atomic force microscopy and molecular dynamics simulation. Biophys J 81:2344–2356

    Google Scholar 

  • Best RB, Fowler SB, Toca-Herrera JL, Clarke J (2002) A simple method for probing the mechanical unfolding pathway of proteins in detail. Proc Natl Acad Sci USA 99:12143–12148

    ADS  Google Scholar 

  • Best RB, Brockwell DJ, Toca-Herrera JL, Blake AW, Smith DA, Radford SE, Clarke J (2003a) Force mode atomic force microscopy as a tool for protein folding studies. Anal Chim Acta 479:87–105

    Google Scholar 

  • Best RB, Fowler SB, Toca-Herrera JL, Steward A, Paci E, Clarke J (2003b) Mechanical unfolding of a titin Ig domain: structure of transition state revealed by combining atomic force microscopy, protein engineering and molecular dynamics simulations. J Mol Biol 330:867–877

    Google Scholar 

  • Bhasin N, Law R, Liao G, Safer D, Ellmer J, Discher BM, Sweeney HL, Discher DE (2005) Molecular extensibility of mini-dystrophins and a dystrophin rod construct. J Mol Biol 352:795–806

    Google Scholar 

  • Bieri O, Kiefhaber T (2000) Kinetic models in protein folding. In: Pain R (ed) Frontiers in molecular biology: mechanisms of protein folding, 2nd edn. Oxford University Press, Oxford, pp 34–64

    Google Scholar 

  • Binnig G, Quate CF, Gerber C (1986) Atomic force microscope. Phys Rev Lett 56:930–933

    ADS  Google Scholar 

  • Brockwell DJ, Beddard GS, Clarkson J, Zinober RC, Blake AW, Trinick J, Olmsted PD, Smith DA, Radford SE (2002) The effect of core destabilization on the mechanical resistance of I27. Biophys J 83:458–472

    Google Scholar 

  • Brockwell DJ, Paci E, Zinober RC, Beddard GS, Olmsted PD, Smith DA, Perham RN, Radford SE (2003) Pulling geometry defines the mechanical resistance of a beta-sheet protein. Nat Struct Biol 10:731–737

    Google Scholar 

  • Brockwell DJ, Beddard GS, Paci E, West DK, Olmsted PD, Smith DA, Radforst SE (2005) Mechanically unfolding the small topologically simole protein L. Biophys J 89:506–519

    Google Scholar 

  • Brujic J, Fernandez JM (2005) Response to Comment on “Force-clamp spectroscopy monitors the folding trajectory of a single protein”. Science 308:498

    Google Scholar 

  • Brzeska H, Venyaminov SV, Grabarek Z Drabikowski W (1983) Comparative studies on thermostability of calmodulin, skeletal muscle troponin C and their triptic fragments. FEBS Lett 153:169–173

    Google Scholar 

  • Buijs J, Norde W, Lichtenbelt JWT (1996) Changes in the secondary structure of adsorbed IgG and F(ab′)(2) studied by FTIR spectroscopy. Langmuir 12:1605–1613

    Google Scholar 

  • Bullard B, Garcia T, Benes V, Leake MC, Linke WA, Oberhauser AF (2006) The molecular elasticity of the insect flight muscle proteins projectin and kettin. Proc Natl Acad Sci USA 103:4451–4456

    ADS  Google Scholar 

  • Burnham NA, Colton RJ (1989) Measuring the nanomechanical properties and surface forces of materials using an atomic force microscope. J Sci Technol A 7:2906–2913

    ADS  Google Scholar 

  • Bustamante C, Marko JF, Siggia ED, Smith S (1994) Entropic elasticity of lambda-phage DNA. Science 265:1599–1600.

    ADS  Google Scholar 

  • Bustamante C, Rivetti C, Keller DJ (1997) Scanning force microscopy under aqueous solutions. Curr Opin Str Biol 7:709–716

    Google Scholar 

  • Bustamante C, Macosko JC, Wuite GJ (2000) Grabbing the cat by the tail: manipulating molecules one by one. Nat Rev Mol Cell Biol 1:130–136

    Google Scholar 

  • Bustamante C, Keller D, Oster G (2001) The physics of molecular motors. Acc Chem Res 34:412–420

    Google Scholar 

  • Bustamante C, Chemla YR, Forde NR, Izhaky D (2004) Mechanical processes in biochemistry. Annu Rev Biochem 73:705–748

    Google Scholar 

  • Carrion-Vazquez M, Oberhauser AF, Fowler SB, Marszalek PE, Broedel SE, Clarke J, Fernandez JM (1999a) Mechanical and chemical unfolding of a single protein: a comparison. Proc Natl Acad Sci USA 96:3694–3699

    ADS  Google Scholar 

  • Carrion-Vazquez M, Marszalek PE, Oberhauser AF, Fernandez JM (1999b) Atomic force microscopy captures length phenotypes in single proteins. Proc Natl Acad Sci USA 96:11288–11292

    ADS  Google Scholar 

  • Carrion-Vazquez M, Oberhauser AF, Fisher TE, Marszalek PE, Li H, Fernandez JM (2000) Mechanical design of proteins studied by single-molecule force spectroscopy and protein engineering. Prog Biophys Mol Biol 74:63–91

    Google Scholar 

  • Carrion-Vazquez M, Li H, Lu H, Marszalek PE, Oberhauser AF, Fernandez JM (2003) The mechanical stability of ubiquitin is linkage dependent. Nat Struct Biol 10:738–743

    Google Scholar 

  • Cecconi C, Shank EA Bustamante C, Marqusee S (2005) Direct observation of the three-state folding of a single protein molecule. Science 309:2057–2060

    ADS  Google Scholar 

  • Chen BL, Baase WA, Nicholson H, Schellmann JA (1992) Folding kinetics of T4 lysozyme and nine mutants at 12 degrees. Biochemistry 31:1464–1476

    Google Scholar 

  • Chu J, Wang Z, Macda R, Kataoka K, Itoh T, Suga T (2000) Novel multibridge-structures piezoelectric microdeviced for scanning force microscopy. J Vac Sci Technol B 18:3604–3607

    Google Scholar 

  • Clarke J, Hamill SJ, Johnson CM (1997) Folding and stability of a fibronectin type III domain of human tenascin. J Mol Biol 270:771–778

    Google Scholar 

  • Cleveland JP, Manne S, Bocek D, Hansma PK (1993) A nondestructive method for determining the spring constant of cantilevers for scanning force microscopy. Rev Sci Instrum 64:403–405

    ADS  Google Scholar 

  • Collin D, Ritort F, Jarzynski C, Smith SB, Tinoco I Jr, Bustamante C (2005) Verification of the Crooks fluctuation theorem and recovery of RNA folding free energies. Nature 437:231–234

    ADS  Google Scholar 

  • Cota E, Clarke J (2000) Folding of β-sandwich proteins: three-state transition of a fibronectin type III module. Protein Sci 9:112–120

    Google Scholar 

  • Craig D, Krammer A, Schulten K, Vogel V (2001) Comparison of the early stages of forced unfolding for fibronectin type III modules. Proc Natl Acad Sci USA 98:5590–5595

    ADS  Google Scholar 

  • Craig D, Gao M, Schulten K, Vogel V (2004) Tuning the mechanical stability of fibronectin type III modules through sequence variations. Structure 12:21–30

    Google Scholar 

  • Dammer U, Popescu O, Wagner P, Anselmetti D, Güntherodt HJ, Misevic GN (1995) Binding strength between cell adhesion proteoglycans measured by atomic force microscopy. Science 267:1173–1175

    ADS  Google Scholar 

  • Dammer U, Hegner M, Anselmetti D, Wagner P, Dreier M, Huber W, Güntherodt HJ (1996) Specific antigen/antibody interactions measured by force microscopy. Biophys J 70:2437–2441

    Google Scholar 

  • De Pablo PJ, Colchero J, Gomez-Herrero J, Baro AM (1998) Jumping mode scanning force microscopy. Appl Phys Lett 73:3300–3302

    ADS  Google Scholar 

  • DeSilva TM, Harper SL, Kotula L, Hensley P, Curtis PJ, Otvos L Jr, Speicher DW (1997) Physical properties of a single-motif erythrocyte spectrin peptide: a highly stable independently folding unit. Biochemistry 36:3991–3997

    Google Scholar 

  • Dietz H, Rief M (2004) Exploring the energy landscape of GFP by single-molecule mechanical experiments. Proc Natl Acad Sci USA 101:16192–16197

    ADS  Google Scholar 

  • Evans E, Ritchie K (1997) Dynamic strength of molecular adhesion bonds. Biophys J 72:1541–1555

    Google Scholar 

  • Evans E, Ritchie K (1999) Strength of a weak bond connecting flexible polymer chains. Biophys J 76:2439–2447

    Google Scholar 

  • Evans E, Ritchie K, Merkel R (1995) Sensitive force technique to probe molecular adhesion and structural linkages at biological interfaces. Biophys J 68:2580–2587

    Google Scholar 

  • Fernandez JM, Li H (2004) Force-clamp spectroscopy monitors the folding trajectory of a single protein. Science 303:1674–1678

    ADS  Google Scholar 

  • Fersht AR (1999) Structure and mechanism in protein science: a guide to enzyme catalysis and protein folding, 2nd edn. Freeman, New York

    Google Scholar 

  • Fersht AR, Matouschek A, Serrano L (1992) The folding of an enzyme. I. Theory of protein engineering analysis of stability and pathway of protein folding. J Mol Biol 224:771–782

    Google Scholar 

  • Feynman RP (1960) There’s plenty of room at the bottom. An invitation to enter a new field of physics. Eng Sci 23:22–36

    Google Scholar 

  • Finley D, Varshavsky A (1985) The ubiquitin system: functions and mechanisms. Trends Biochem Sci 10:343–346

    Google Scholar 

  • Fisher TE, Carrion-Vazquez M, Oberhauser AF, Li H, Marszalek PE, Fernandez JM (2000) Single molecular force spectroscopy of modular proteins in the nervous system. Neuron 27:435–446

    Google Scholar 

  • Florin EL, Moy VT, Gaub HE (1994) Adhesion forces between individual ligand-receptor pairs. Science 264:415–417

    ADS  Google Scholar 

  • Florin EL, Rief M, Lehmann H, Ludwig M, Dornmair C, Moy VT, Gaub HE (1995) Sensing specific molecular interactions with the atomic force microscope. Biosens Bioelectron 10:895–901

    Google Scholar 

  • Forman JR, Qamar S, Paci E, Sandford RN, Clarke J (2005) The remarkable strength of polycystin-1 supports a direct role in mechanotransduction. J Mol Biol 349:861–871

    Google Scholar 

  • Fowler SB, Best RB, Toca-Herrera JL, Rutherford TJ, Steward A, Paci E, Karplus M, Clarke J (2002) Mechanical unfolding of a titin Ig domain: structure of unfolding intermediate revealed by combining AFM, molecular dynamics simulations, NMR and protein engineering. J Mol Biol 322:841–849

    Google Scholar 

  • Frederix PL, Akiyama T, Staufer U, Gerber Ch, Fotiadis D, Müller DJ, Engel A (2003) Atomic force bio-analytics. Curr Opin Chem Biol 7:641–647

    Google Scholar 

  • Freiburg A, Trombitas K, Hell W, Cazorla O, Fougerousse F, Centner T, Kolmerer B, Witt C, Beckmann JS, Gregorio CC, Granzier H, Labeit S (2000) Series of exon-skipping events in the elastic spring region of titin as the structural basis for myofibrillar elastic diversity. Circ Res 86:1114–1121

    Google Scholar 

  • Furuike S, Ito T, Yamazaki M (2001) Mechanical unfolding of single filamin A (ABP-280) molecules detected by atomic force microscopy. FEBS Lett 498:72–75

    Google Scholar 

  • Gao M, Craig D, Vogel V, Schulten K (2002) Identifying unfolding intermediates of FN-III 10 by steered molecular dynamics. J Mol Biol 323:939–950

    Google Scholar 

  • Gao M, Craig D, Lequin O, Campbell ID, Vogel V, Schulten K (2003) Structure and functional significance of mechanically unfolded fibronectin type III intermediates. Proc Natl Acad Sci USA 100:14784–14789

    ADS  Google Scholar 

  • Gillespie PG, Walker RG (2001) Molecular basis of mechanosensory transduction. Nature 413:194–202

    ADS  Google Scholar 

  • Gittes F, Schmidt CF (1998) Thermal noise limitations on micromechanical experiments. Eur Biophys J 27:75–81

    Google Scholar 

  • Hanley W, McCarty O, Jadhav S, Tseng Y, Wirtz D, Konstantopoulos K (2003) Single molecule characterization of P-selectin/ligand binding. J Biol Chem 278:10556–10561

    Google Scholar 

  • Heymann B, Grubmüller H (2000) Dynamic force spectroscopy of molecular adhesion bonds. Phys Rev Lett 84:6126–6129

    ADS  Google Scholar 

  • Hinterdorfer P (2002) Molecular recognition studies using the atomic force microscope. Methods Cell Biol 68:115–139

    Google Scholar 

  • Hinterdorfer P, Baumgartner W, Gruber HJ, Schilcher K, Schindler H (1996) Detection and localization of individual antibody-antigen recognition events by atomic force microscopy. Proc Natl Acad Sci USA 93:3477–3481

    ADS  Google Scholar 

  • Hlady V, Buijs J (1998) Local and global optical spectroscopic probes of adsorbed proteins. In: Malmsten M (ed) Biopolymers at interfaces. Dekker, New York, pp 181–220

    Google Scholar 

  • Howard J (2001) Mechanics of motor proteins and the cytoskeleton. Sinauer Associates, Sunderland, MA

    Google Scholar 

  • Hutter JL, Bechhoffer J (1993) Calibration of atomic-force microscope tips. Rev Sci Instrum 64:1868–1873

    ADS  Google Scholar 

  • Huxley H, Hanson J (1954) Changes in the cross-striations of muscle during contraction and stretch and their structural interpretation. Nature 173:973–976

    ADS  Google Scholar 

  • Improta S, Politou AS, Pastore A (1996) Immunoglobulin-like modules from titin I-band: extensible components of muscle elasticity. Structure 4:323–337

    Google Scholar 

  • Isralewitz B, Gao M, Schulten K (2001) Steered molecular dynamics and mechanical functions of proteins. Curr Opin Struct Biol 11:224–230

    Google Scholar 

  • Izrailev S, Stepaniants S, Balsera M, Oono Y, Schulten K (1997) Molecular dynamics study of unbinding of the avidin-biotin complex. Biophys J 72:1568–1581

    Google Scholar 

  • Janovjak H, Kessler M, Oesterhelt D, Gaub H, Müller DJ (2003) Unfolding pathways of native bacteriorhodopsin depend on temperature. EMBO J 22:5220–5229

    Google Scholar 

  • Janovjak H, Struckmeier J, Hubain M, Kedrov A, Kessler M, Müller DJ (2004) Probing the energy landscape of the membrane protein bacteriorhodopsin. Structure 12:871–879

    Google Scholar 

  • Janovjak H, Kedrov A, Cisneros DA, Sapra KT, Struckmeier J, Muller DJ (2006) Imaging and detecting molecular interactions of single transmembrane proteins. Neurobiol Aging 27:546–561

    Google Scholar 

  • Junker JP, Hell K, Schlierf M, Newpert W, Rief M (2005) Influence of substrate binding on the mechanical stability of mouse dihydrofolate reductase. Biophys J 89:L46–48

    Google Scholar 

  • Khorasanizadeh S, Peters ID, Butt TR, Roder H (1993) Folding and stability of a tryptophancontaining mutant of ubiquitin. Biochemistry 32:7054–7063

    Google Scholar 

  • Kienberger F, Kada G, Mueller H, Hinterdorfer P (2005) Single molecule studies of antibody-antigen interaction strength versus intra-molecular antigen stability. J Mol Biol 347:597–606

    Google Scholar 

  • Klimov DK, Thirumalai D (2000) Native topology determines force-induced unfolding pathways in globular proteins. Proc Natl Acad Sci USA 97:7524–7529

    Google Scholar 

  • Koradi R, Billeter M, Wuthrich K (1996) MOLMOL: a program for display and analysis of macromolecular structures. J Mol Graph 14:51–55

    Google Scholar 

  • Krammer A, Lu H, Isralewitz B, Schulten K, Vogel V (1999) Forced unfolding of the fibronectin type III module reveals a tensile molecular recognition switch. Proc Natl Acad Sci USA 96:1351–1356

    ADS  Google Scholar 

  • Kühner F, Costa LT, Bisch PM, Thalhammer S, Heckl WM, Gaub HE (2004) LexA-DNA bond strenght by single molecule force spectroscopy. Biophys J 87:2683–2690

    Google Scholar 

  • Labeit S, Kolmerer B (1995) Titins: giant proteins in charge of muscle ultrastructure and elasticity. Science 270:293–296

    ADS  Google Scholar 

  • Lee G, Abdi K, Jiang Y, Michaely P, Bennett V, Marszalek PE (2006), Nanospring behaviour of anyrin repeats. Nature 440:246–249

    ADS  Google Scholar 

  • Lee GU, Chrisey LA, Colton RJ (1994) Direct measurement of the forces between complementary strands of DNA. Science 266:771–773

    ADS  Google Scholar 

  • Lehenkari PP, Horton MA (1999) Single integrin molecule adhesion forces in intact cells measured by atomic force microscopy. Biochem Biophys Res Commun 259:645–650

    Google Scholar 

  • Lenne PF, Raae AJ, Altmann SM, Saraste M, Horber JK (2000) States and transitions during forced unfolding of a single spectrin repeat. FEBS Lett 476:124–128

    Google Scholar 

  • Levinthal C (1969) How to fold graciously. In: DeBrunner P, Tsigris JCM, Münck E (eds) Mössbauer spectroscopy in biological systems. Proceedings of a meeting held at Allerton House, Monticello, IL. University of Illinois Press, Champaign, IL, p22

    Google Scholar 

  • Leuba S, Zlatanova J (eds) (2001) Biology at the single-molecule level. Pergamon, Amsterdam

    Google Scholar 

  • Li F, Redick SD, Erickson HP, Moy VT (2003) Force measurements of the α5β1 integrin-fibr interaction. Biophys J 84:1252–1262

    Google Scholar 

  • Li H, Fernandez JM (2003) Mechanical design of the first proximal Ig domain of human cardiac titin revealed by single molecule force spectroscopy. J Mol Biol 334:75–86

    Google Scholar 

  • Li H, Carrion-Vazquez M, Oberhauser AF, Marszalek PE, Fernandez JM (2000a) Point mutations alter the mechanical stability of immunoglobulin modules. Nat Struct Biol 7:1117–1120

    Google Scholar 

  • Li H, Oberhauser AF, Fowler SB, Clarke J, Fernandez JM (2000b) Atomic force microscopy reveals the mechanical design of a modular protein. Proc Natl Acad Sci USA 97:6527–6531

    ADS  Google Scholar 

  • Li H, Oberhauser AF, Redick SD, Carrion-Vazquez M, Erickson HP, Fernandez JM (2001) Multiple conformations of PEVK proteins detected by single-molecule techniques. Proc Natl Acad Sci USA 98:10682–10686

    ADS  Google Scholar 

  • Li H, Linke WA, Oberhauser AF, Carrion-Vazquez M, Kerkvliet JG, Lu H, Marszalek PE, Fernandez JM (2002) Reverse engineering of the giant muscle protein titin. Nature 18:998–1002

    ADS  Google Scholar 

  • Li L, Huang HH, Badilla CL, Fernandez JM (2005) Mechanical unfolding intermediates observed by single-molecule force spectroscopy in a fibronectin type III module. J Mol Biol 345:817–826

    Google Scholar 

  • Li PC, Makarov DE (2003) Theoretical studies of the mechanical unfolding of the muscle protein titin: bridging the time-scale gap between simulation and experiment. J Chem Phys 119:9260–9268

    ADS  Google Scholar 

  • Linke WA, Kulke M, Li HB, Fujita-Becker S, Neagoe C, Manstein DJ, Gautel M, Fernandez JM (2002) PEVK domain of titin: an entropic spring with actin-binding properties. J Struct Biol 137:194–205

    Google Scholar 

  • Liphardt J, Dumont S, Smith SB, Tinoco IJr, Bustamante C (2002) Equilibrium information from nonequilibrium measurements in an experimental test of Jarzynski’s equality. Science 296:1832–1853

    ADS  Google Scholar 

  • Litvinovich SV, Ingham KC (1995) Interactions between type III domains in the 110kDa cell-binding fragment of fibronectin. J Mol Biol 248:611–626

    Google Scholar 

  • Lu H, Schulten K (1999) Steered molecular dynamics simulations of force-induced protein domain unfolding. Proteins 35:453–463

    Google Scholar 

  • Lu H, Schulten K (2000) The key event in force-induced unfolding of titin’s immunoglobulin domains. Biophys J 79:51–65

    Google Scholar 

  • Lu H, Isralewitz B, Krammer A, Vogel V, Schulten K (1998) Unfolding of titin immunoglobulin domains by steered molecular dynamics simulation. Biophys J 75:662–671

    Google Scholar 

  • Maier B, Potter L, So M, Long CD, Seifert HS, Sheetz MP (2002) Single pilus motor forces exceed 100 pN. Proc Natl Acad Sci USA 99:16012–16017

    ADS  Google Scholar 

  • Marko JF, Siggia ED (1995) Stretching DNA. Macromolecules 28:8759–8770

    ADS  Google Scholar 

  • Marshall BT, Long M, Piper JW, Yago T, McEver RP, Zhu C (2003) Direct observation of catch bonds involving cell-adhesion molecules. Nature 423:190–193

    ADS  Google Scholar 

  • Marszalek PE, Oberhauser AF, Pang YP, Fernandez JM (1998) Polysaccharide elasticity governed by chair-boat transitions of the glucopyranose ring. Nature 396:661–664

    ADS  Google Scholar 

  • Marszalek PE, Pang YP, Li H, El Yazal, J, Oberhauser AF, Fernandez JM (1999a) Atomic levers control pyranose ring conformations. Proc Natl Acad Sci USA 96:77894–77898

    ADS  Google Scholar 

  • Marszalek PE, Lu H, Li H, Carrion-Vazquez M, Oberhauser AF, Schulten K, Fernandez JM (1999b) Mechanical unfolding intermediates in titin modules. Nature 402:100–103

    ADS  Google Scholar 

  • Maruyama K, Kimura S, Ohashi K, Kuwano Y (1981) Connectin, an elastic protein of muscle. Identification of “titin” with connectin. J Biochem (Tokyo) 89:701–709

    Google Scholar 

  • Matouschek A (2003) Protein unfolding-an important process in vivo? Curr Opin Struct Biol 13:98–109

    Google Scholar 

  • Maxwell KL, Wildes D, Zarrine-Afsar A, de los Rios MA, Brown AG et al (2005) Protein folding: defining a “standard” set of experimental conditions and a preliminary kinetic data set of two-state proteins. Protein Sci 14:602–616

    Google Scholar 

  • Meadows PY, Bemis JE, Walker GC (2003) Single-molecule force spectroscopy of isolated and aggregated fibronectin proteins on negatively charged surfaces in aqueous liquids. Langmuir 19:9566–9572

    Google Scholar 

  • Merkel R (2001) Force spectroscopy on single passive biomolecules and single biomolecular bonds. Phys Rep 346:344–385

    ADS  Google Scholar 

  • Merkel R, Nassoy P, Leung A, Ritchie K, Evans E (1999) Energy landscapes of receptor-ligand bonds explored with dynamic force spectroscopy. Nature 397:50–53

    ADS  Google Scholar 

  • Minne SC, Yaraliogly G, Manalis SR, Adams JD, Zesch J, Atalar A, Quate CF (1998) Automated parallel high-speed atomic force microscopy. Appl Phys Lett 72:2340–2302

    ADS  Google Scholar 

  • Moy VT, Florin EL, Gaub HE (1994) Intermolecular forces and energies between ligands and receptors. Science 266:257–259

    ADS  Google Scholar 

  • Müller DJ, Kessler M, Oesterhelt F, Möller C, Oesterhelt D, Gaub H (2002) Stability of bacteriorhodopsin alpha-helices and loops analyzed by single-molecule force spectroscopy. Biophys J 8:3578–3588

    Google Scholar 

  • Murzin AG, Brenner SE, Hubbard T, Clothia C (1995) SCOP: a structural classification of proteins database for the investigation of sequences and structures. J Mol Biol 247:536–540

    Google Scholar 

  • Neher E, Sakmann B (1976) Single-channel current recorded from membrane of denervated frog muscle fibers. Nature 260:799–802

    ADS  Google Scholar 

  • Neupert W, Brunner M (2002) The protein import motor of mitochondria. Nat Rev Mol Cell Biol 3:555–565

    Google Scholar 

  • Ng SP, Rounsevell RWS, Steward A, Geierhaas CD, Williams PM, Paci E, Clarke J (2005) Mechanical unfolding of TNfn3: the unfolding pathway of a fnIII domain probed by protein engineering, AFM and MD simulation. J Mol Biol 350:776–789

    Google Scholar 

  • Oberdorfer Y, Fuchs H, Janshoff A (2000) Conformational analysis of native fibronectin by means of force spectroscopy. Langmuir 16:9955–9958

    Google Scholar 

  • Oberhauser AF, Marszalek PE, Erickson HP, Fernandez JM (1998) The molecular elasticity of tenascin, an extracellular matrix protein. Nature 393:181–185

    ADS  Google Scholar 

  • Oberhauser AF, Marszalek PE, Carrion-Vazquez M, Fernandez JM (1999) Single protein misfolding events captured by atomic force microscopy. Nat Struct Biol 6:1025–1028

    Google Scholar 

  • Oberhauser AF, Hansma PK, Carrion-Vazquez M, Fernandez JM (2001) Stepwise unfolding of titin under force-clamp atomic force microscopy. Proc Natl Acad Sci USA 98:468–472

    ADS  Google Scholar 

  • Oberhauser AF, Badilla-Fernandez C, Carrion-Vazquez M, Fernandez JM (2002) The mechanical hierarchies of fibronectin observed with single-molecule AFM. J Mol Biol 319:433–447

    Google Scholar 

  • Oesterhelt F, Oesterhelt D, Pfeiffer M, Engel A, Gaub HE, Müller DJ (2000) Unfolding pathways of individual bacteriorhodopsins. Science 288:143–146

    ADS  Google Scholar 

  • Oster G, Wang H (2003) Rotary protein motors. Trends Cell Biol 13:114–121

    Google Scholar 

  • Paci E, Karplus M (1999) Forced unfolding of fibronectin type 3 modules: an analysis by biased molecular dynamics simulations. J Mol Biol 288:441–459

    Google Scholar 

  • Paci E, Karplus M (2000) Unfolding proteins by external forces and temperature: the importance of topology and energetics. Proc Natl Acad Sci USA 97:6521–6526

    ADS  Google Scholar 

  • Pantazatos DP, MacDonald RI (1997) Site-directed mutagenesis of either the highly conserved Trp-22 or the moderately conserved Trp-95 to a large, hydrophobic residue reduces the thermodynamic stability of a spectrin repeating unit. J Biol Chem 272:21052–21059

    Google Scholar 

  • Pickart CM, Cohen RE (2004) Proteasomes and their kin: proteases in the machine age. Nat Rev Mol Cell Biol 5:177–187

    Google Scholar 

  • Plaxco KW, Spitzfaden C, Campbell ID, Dobson CM (1997) A comparison of the folding kinetics and thermodynamics of two homologous fibronectin type III modules. J Mol Biol 270:763–770

    Google Scholar 

  • Politou AS, Thomas DJ, Pastore A (1995) The folding and stability of titin immunoglobulin-like modules, with implications for the mechanism of elasticity. Biophys J 69:2601–2610

    Google Scholar 

  • Prakash S, Matouschek A (2004) Protein unfolding in the cell. Trends Biochem Sci 29:593–600

    Google Scholar 

  • Proksch R, Schäffer TE, Cleveland JP, Callahan RC, Viani MB (2004) Finite optical spot size and position corrections in thermal spring constant calibration. Nanotechnology 15:1344–1350

    ADS  Google Scholar 

  • Qian F, Wei W, Germino G, Oberhauser AF (2005) The nanomechanics of polycystin-1 ectodomain. J Biol Chem 280:40723–40730

    Google Scholar 

  • Rief M, Oesterhelt F, Heymann B, Gaub HE (1997a) Single molecule force spectroscopy on polysaccharides by atomic force microscopy. Science 275:1295–1297

    Google Scholar 

  • Rief M, Gautel M, Oesterhelt F, Fernandez JM, Gaub HE (1997b) Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276:1109–1112

    Google Scholar 

  • Rief M, Fernandez JM, Gaub HE (1998a) Elastically coupled two-level systems as a model for biopolymer extensibility. Phys Rev Lett 81:4764–4767

    ADS  Google Scholar 

  • Rief M, Gautel M, Schemmel A, Gaub HE (1998b) The mechanical stability of immunoglobulin and fibronectin III domains in the muscle protein titin measured by atomic force microscopy. Biophys J 75:3008–3014

    Google Scholar 

  • Rief M, Pascual J, Saraste M, Gaub HE (1999) Single molecule force spectroscopy of spectrin repeats:low unfolding forces in helix bundles. J Mol Biol 286:553–561

    Google Scholar 

  • Rohs R, Etchebest C, Lavery R (1999) Unraveling proteins: a molecular mechanics study. Biophys J 76:2760–2768

    Google Scholar 

  • Ros R, Schwesinger F, Anselmtti D, Kubon M, Schäfer R, Plückthun A, Tiefenauer L (1998) Antigen binding forces of individually addressed single-chain Fv antibody molecules. Proc Natl Acad USA 95:7402–7405

    ADS  Google Scholar 

  • Rounsevell R, Forman JR, Clarke J (2004) Atomic force microscopy: mechanical unfolding of proteins. Methods 34:100–111

    Google Scholar 

  • Samori B, Zuccheri G, Baschieri R (2005) Protein unfolding and refolding under force: methodologies for nanomechanics. Chemphyschem 6:29–34

    Google Scholar 

  • Sarkar A, Robertson RB, Fernandez JM (2004) Simultaneous atomic force microscope and fluorescence measurements of protein unfolding using a calibrated evanescent wave. Proc Natl Acad Sci USA 101:12882–12886

    ADS  Google Scholar 

  • Sarkar A, Caamano S, Fernandez JM (2005) The elasticity of individual titin PEVK exons measured y single molecule atomic force microscopy. J Biol Chem 280:6261–6264

    Google Scholar 

  • Sato T, Esaki M, Fernandez JM, Endo T (2005) Comparison of the protein-unfolding pathways between mitochondrial protein import and atomic-force microscopy measurements. Proc atl Acad Sci USA 102:17999–18004

    ADS  Google Scholar 

  • Sauer RT, Bolon DN, Burton BM, Burton RE, Flynn JM, Grant RA, Hersch GL, Joshi SA, Kenniston A, Levchenko I, Neher SB, Oakes E., Siddiqui SM, Wah DA, Baker TA (2004) Sculpting the proteome with AAA(+) proteases and disassembly machines. Cell 119:9–18

    Google Scholar 

  • Scalley ML, Yi Q, Gu H, McCormack A, Yates JR, Baker D (1997) Kinetics of folding of the IgG binding domain of Peptostreptoccocal protein L. Biochemistry 36:3373–3382

    Google Scholar 

  • Schlierf M, Li H, Fernandez JM (2004) The unfolding kinetics of ubiquitin captured with single-molecule force-clamp techniques. Proc Natl Acad Sci USA 101:7299–7304

    ADS  Google Scholar 

  • Schoenauer R, Bertoncini P, Machaidze G, Aebi U, Perriard JC, Hegner M, Agarkova (2005). Myomesin s a molecular spring with adaptable elasticity. J Mol Biol 349:367–379

    Google Scholar 

  • Schwaiger I, Kardinal A, Schleicher M, Noegel AA, Rief M (2004) A mechanical unfolding intermediate n an actin-crosslinking protein. Nat Struct Mol Biol 11:81–85

    Google Scholar 

  • Schwaiger I., Sattler C, Hostetter DR, Rief M (2002) The myosin coiled-coil is a truly elastic protein structure. Nat Mater 1:232–235

    ADS  Google Scholar 

  • Schwaiger I, Schleicher M, Noegel AA, Rief M (2005) The folding pathway of a fast-folding immunoglobulin domain revealed by single-molecule mechanical experiments. EMBO Rep 6:1–6

    Google Scholar 

  • Schwesinger F, Ros R, Strunz T, Anselmetti D, Güntherodt H J, Honegger A, Jermutus L, Tiefenauer L, Pluckthun A (2000) Unbinding forces of single antibody-antigen complexes correlate with their thermal dissociation rates. Proc Natl Acad Sci USA 97:9972–9977

    ADS  Google Scholar 

  • Scott KA, Steward A, Fowler SB, Clarke J (2002) Titin; a multidomain protein that behaves as the um of its parts. J Mol Biol 315:819–829

    Google Scholar 

  • Sekiguchi H, Arakawa H, Okajima T, Ikai A (2002) Non-destructive force measurement in liquid sing atomic force microscope. Appl Surf Sci 188:489–492

    ADS  Google Scholar 

  • Sekiguchi H, Arakawa H, Taguchi H, Ito T, Kokawa R, Ikai A (2003) Specific interaction between GroEL and denatured protein measured by compression-free force spectroscopy. Biophys 85:484–490

    Google Scholar 

  • Shao X, Davletov BA, Sutton RB, Südhof TC, Rizo J (1996) Bipartite Ca2+-binding motif in C2 domains of synaptotagmin and protein kinase C. Science 273:248–251

    ADS  Google Scholar 

  • Shtilerman M, Lorimer GH, Englander SW (1999) Chaperonin function: folding by forced unfolding. Science 284:822–825

    ADS  Google Scholar 

  • Smith DE, Tans SJ, Smith SB, Grimes S, Anderson DL, Bustamante C (2001) The bacteriophage straight phi29 portal motor can package DNA against a large internal force. Nature 13:748–752

    MATH  ADS  Google Scholar 

  • Steward A, Toca-Herrera JL, Clarke J (2002) Versatile cloning system for construction of multimeric proteins for use in atomic force microscopy. Protein Sci 11:2179–2183

    Google Scholar 

  • Tatham A, Shewry PR (2000) Elastomeric proteins: biological roles, structures and mechanisms. Trends Biochem Sci 25:567–571

    Google Scholar 

  • Thompson RE, Siggia ED (1995) Physical limits on the mechanical measurement of the secondary structure of bio-molecules. Europhys Lett 31:335–340

    ADS  Google Scholar 

  • Tsay JT, Appleman JR, Beard WA, Prendergast NJ, Delcamp TJ, Freisheim JH, Blakley RL (1990) Kinetic investigation of the functional role of phenylalanine-31 of recombinant human dihydrofolate reductase. Biochemistry 29:6428–6436

    Google Scholar 

  • Tskhovrebova L, Trinick J (2003) Titin: properties and family relationships. Nat Rev Mol Cell Biol 4:679–789

    Google Scholar 

  • Urry DW, Hugel T, Seitz M, Gaub HE, Sheiba L, Dea J, Xu J, Parker T (2002) Elastin: a representative ideal protein elastomer. Philos Trans R Soc Lond Ser B 357:169–184

    Google Scholar 

  • Valpuesta JM, Martin-Benito J, Gomez-Puertas P, Carrascosa JL, Willison KR (2002) Structure and function of a protein folding machine: the eukaryotic cytosolic chaperonin CCT. FEBS Lett 529:11–16

    Google Scholar 

  • Vettiger P, Cross G, Despont M, Drechsler U, Dürig U, Gotsmann B, Häberle W, Lantz M, Rothuizen H, Stutz R, Binnig GK (2002) The “Millipede”-nanotechnology entering data storage. IEEE T Nanotechnol 1:39–55

    ADS  Google Scholar 

  • Viani MB, Schäffer TE, Chand A, Rief M, Gaub E, Hansma PK (1999) Small cantilevers for force spectroscopy of single molecules. J Appl Phys 8:2558–2662

    Google Scholar 

  • Wallace LA, Matthews CR (2002) Highly divergent dihydrofolate reductases conserve complex folding mechanisms. J Mol Biol 315:193–211

    Google Scholar 

  • Wang H, Oster G (1998) Energy transduction in the F1 motor of ATP synthase. Nature 396:279–282

    ADS  Google Scholar 

  • Wang K, McClure J, Tu A (1979) Titin: major myofibrillar components of striated muscle. Proc Natl Acad Sci USA 76:3698–3702

    ADS  Google Scholar 

  • Watanabe K, Muhle-Goll C, Kellermayer MS, Labeit S, Granzier H (2002) Different molecular mechanics displayed by titin’s constitutively and differentially expressed tandem Ig segments. J Struct Biol 137:248–258

    Google Scholar 

  • Weisel JW, Shuman H, Litvinov, RI (2003) Protein-protein unbinding induced by force: single-molecule studies. Curr Opin Struct Biol 13:227–235

    Google Scholar 

  • Wiborg O, Pedersen MS, Wind A, Berglund LE, Marcker KA, Vuust J (1985) The human ubiquitin multigene family: some genes contain multiple directly repeated ubiquitin coding sequences. EMBO J 4:755–759

    Google Scholar 

  • Wielert-Badt S, Hinterdorfer P, Gruber H J, Lin JT, Badt D, Wimmer B, Schindler H, Kinne RKH (2002) Single molecule recognition of protein binding epitopes in brush border membranes by force microscopy. Biophys J 82:2767–2774

    Google Scholar 

  • Wilcox AJ, Choy J, Bustamante C, Matouschek A (2005) Effect of protein structure on mitochondrial import. Proc Natl Acad Sci 102:15435–15440

    ADS  Google Scholar 

  • Williams PM, Fowler SB, Best RB, Toca-Herrera JL, Scott KA, Steward A, Clarke J (2003) Hidden complexity in the mechanical properties of titin. Nature 422:446–449

    ADS  Google Scholar 

  • Wong SS, Joselevich E, Woolley A T, Cheung CL, Lieber CM (1998) Covalently functionalized nanotubes as nanometre-sized probes in chemistry and biology. Nature 394:52–55

    ADS  Google Scholar 

  • Yang G, Cecconi C, Baase WA, Vetter IR, Breyer WA, Haack JA, Matthews BW, Dahlquist FW, Bustamante C (2000) Solid-state synthesis and mechanical unfolding of polymers of T4 lysozyme. Proc Natl Acad Sci USA 97:139–144

    ADS  Google Scholar 

  • Zhang X, Wojcikiewicz E, Moy VT (2002) Force spectroscopy of the leukocyte function-associated antigen-1/intercellular adhesion molecule-1 interaction. Biophys J 83:2270–2279

    Google Scholar 

  • Zhu C, Long M, Chesla SE, Bongrand P (2002) Measuring receptor/ligand interaction at the single-bond level: experimental and interpretative issues. Ann Biomed Eng 30:305–314

    Google Scholar 

  • Zhuang X, Rief M (2003) Single-molecule folding. Curr Opin Struct Biol 13:88–97

    Google Scholar 

  • Zlatanova J, Leuba SH (2003) Chromatin fibers, one at-a-time. J Mol Biol 331:1–19

    Google Scholar 

  • Zlatanova J, Lindsay SM, Leuba SH (2000) Single molecule force spectroscopy in biology using the atomic force microscope. Prog Biophys Mol Biol 74:37–61

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Carrión-Vázquez, M. et al. (2006). Protein Nanomechanics — as Studied by AFM Single-Molecule Force Spectroscopy. In: Arrondo, J.L.R., Alonso, A. (eds) Advanced Techniques in Biophysics. Springer Series in Biophysics, vol 10. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-30786-9_8

Download citation

Publish with us

Policies and ethics