Skip to main content

Differential Scanning Calorimetry of Proteins: an Overview and Some Recent Developments

  • Chapter
Advanced Techniques in Biophysics

Part of the book series: Springer Series in Biophysics ((BIOPHYSICS,volume 10))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baldwin RL (2002) Making a network of hydrophobic clusters. Science 295:487–489

    Article  Google Scholar 

  • Brandts JF, Hu CQ, Lin LN (1989) A simple model for proteins with interacting domains. Applications to scanning calorimetry data. Biochemistry 28:8588–8596

    Article  Google Scholar 

  • Conejero-Lara F, Mateo PL, Aviles FX, Sanchez-Ruiz JM (1991) Effect of Zn2+ on the thermal denaturation of carboxypeptidase B. Biochemistry 30:2067–2072

    Article  Google Scholar 

  • Cooper A (1976) Thermodynamic fluctuations in protein molecules. Proc Natl Acad Sci USA 73:2740–2741

    Article  ADS  Google Scholar 

  • Cooper A (2005) Heat capacity effects in protein folding and ligand binding: a re-evaluation of the role of water in biomolecular thermodynamics. Biophys Chem 115:89–97

    Article  Google Scholar 

  • Cunningham EL, Jaswal SS, Sohk JL, Agard DA (1999) Kinetic stability as mechanism for protein longevity. Proc Natl Acad Sci USA 96:11008–11014

    Article  ADS  Google Scholar 

  • Dragan AI, Privalov PL (2002) Unfolding of a leucine zipper is not a simple two-state transition. J Mol Biol 321:891–908

    Article  Google Scholar 

  • Forrer P, Chang C, Ott D, Wlodawer A, Plückthun A (2004) Kinetic stability and crystal structure of the viral capsid protein SHP. J Mol Biol 344:179–193

    Article  Google Scholar 

  • Foss TR, Kelker MS, Wiseman RL, Wilson IA, Kelly JW (2005) Kinetic stabilization of the native state by protein engineering: implications for inhibition of transthyretin amyloidogenesis. J Mol Biol 347:841–854

    Article  Google Scholar 

  • Freire E (1994) Statistical thermodynamics analysis of differential scanning calorimetry data: structural deconvolution of heat capacity function of proteins. Methods Enzymol 240:502–530

    Article  Google Scholar 

  • Freire E (1995) Differential scanning calorimetry. Methods Mol Biol 40:191–218

    Google Scholar 

  • Freire E, van Osdol WW, Mayorga OL, Sanchez-Ruiz JM (1990) Calorimetrically determined dynamics of complex unfolding transitions in proteins. Annu Rev Biophys Biophys Chem 19:159–188

    Article  Google Scholar 

  • Freire E, Murphy KP, Sanchez-Ruiz JM, Galisteo ML, Privalov PL (1992) The molecular basis of cooperativity in protein folding. Thermodynamic dissection of interdomain interactions in phosphoglycerate kinase. Biochemistry 31:250–256

    Article  Google Scholar 

  • Fukada H, Sturtevant JM, Quiocho F (1983) Thermodynamics of the binding of L-arabinose and of D-galactose to the L-arabinose-binding protein of Escherichia coli. J Biol Chem 258:13193–13198

    Google Scholar 

  • Garcia-Mira MM, Sadqui M, Fischer N, Sanchez-Ruiz JM, Muñoz V (2002) Experimental identification of downhill folding. Science 298:2191–2195

    Article  ADS  Google Scholar 

  • Gomez J, Hilser VJ, Xie D, Freire E (1995) The heat capacity of proteins. Proteins 22:404–412

    Article  Google Scholar 

  • Greene RF, Pace CN (1974) Urea and guanidinium chloride denaturation of ribonuclease, α-chymotrypsin, and β-lactoglobulin. J Biol Chem 249:5388–5393

    Google Scholar 

  • Guzman-Casado M, Parody-Morreale A, Robic S, Marqusee S, Sanchez-Ruiz JM (2003) Energetic evidence for formation of a pH-dependent hydrophobic cluster in the denatured state of Thermus thermophilus ribonuclease H. J Mol Biol 329:731–743

    Article  Google Scholar 

  • Ibarra-Molero B, Perez-Jimenez R, Godoy-Ruiz R, Sanchez-Ruiz JM (2004) Linkage between temperature and chemical denaturant effects on protein stability: the interpretation of calorimetrically determined m values. In: Doyle M, Ladbury J (eds) Biocalorimetry II: applications of calorimetry in the biological sciences. Wiley, New York, pp 203–214

    Google Scholar 

  • Irun MP, Garcia-Mira MM, Sanchez-Ruiz JM, Sancho J (2001) Native hydrogen bonds in a molten globule: the apoflavodoxin thermal intermediate. J Mol Biol 306:877–888

    Article  Google Scholar 

  • Jackson SE (1998) How do small single-domain proteins fold? Folding Des 3:R81–R91

    Article  Google Scholar 

  • Jackson WM, Brandts JF (1970) Thermodynamics of protein denaturation. A calorimetric study of reversible denaturation of chymotrypsinogen and conclusions regarding accuracy of two-state approximation. Biochemistry 9:2294–2301

    Article  Google Scholar 

  • Jaswal SS, Sohl JL, Dans JH, Agard DA (2002) Energetic landscape of alpha-lytic protease optimizes longevity through kinetic stability. Nature 415:343–346

    Article  ADS  Google Scholar 

  • Jaswal SS, Truhlar SM, Dill KA, Agard DA (2005) Comprehensive analysis of protein folding activation thermodynamics reveals a universal behaviour violated by kinetically stable proteins. J Mol Biol 347:355–366

    Article  Google Scholar 

  • Jayaraman S, Gantz D, Gursky O (2005a) Structural basis for thermal stability of human low-density lipoprotein. Biochemistry 44:3965–3971

    Article  Google Scholar 

  • Jayaraman S, Gantz D, Gursky O (2005b) Kinetic stabilization and function of apoliporptein A-2-DMPC disks: camparison with apo A-1 and apo C-1. Biophys J 88:2907–2918

    Article  Google Scholar 

  • Kaushik JK, Ogasahara K, Yutani K (2002) The unusually slow relaxation kinetics of the folding-unfolding of pyrrolydone carboxyl peptidase from a hyperthermophile, pyroccocus furiosus. J Mol Biol 316:991–1003

    Article  Google Scholar 

  • Kaya H, Chan HS (2000) Polymer principles of protein calorimetric two-state cooperativity. Proteins 40:637–661

    Article  Google Scholar 

  • Kholodenko V, Freire E (1999) A simple method to measure the absolute heat capacity of proteins. Anal Biochem 270:336–338

    Article  Google Scholar 

  • Klein-Seetharaman J, Oikawa M, Grimshaw SB, Wimer J, Duchart E, Ueada T et al (2002) Long-range interactions a non-native protein. Science 295:1719–1722

    Article  ADS  Google Scholar 

  • Luque I, Freire E (1998) Structure-based prediction of binding affinities and molecular design of peptide ligands. Methods Enzymol 295:100–127

    Article  Google Scholar 

  • Luque I, Leavitt SA, Freire E (2002) The linkage between protein folding and functional cooperativity: two sides of the same coin? Annu Rev Biophys Biomol Struct 31:235–256

    Article  Google Scholar 

  • Lynch SM, Boswell SA, Colon W (2004) Kinetic stability of Cu/Zn superoxide dismutase is dependent on its metal ligands: implications for ALS. Biochemistry 43:16525–16531

    Article  Google Scholar 

  • Makhatadze GI (1998) Measuring protein thermostability by differential scanning calorimetry. Current protocols in protein science 7.9.1–7.9.14. Wiley, New York

    Google Scholar 

  • Makhatadze GI, Privalov PL (1995) Energetics of protein structure. Adv Protein Chem 47:307–425

    Article  Google Scholar 

  • Manly SP, Mathews KS, Sturtevant JM (1985) Thermal denaturation of the core protein of lac repressor. Biochemistry 24:3842–3846

    Article  Google Scholar 

  • Manning M, Colon W (2004) Structural basis of protein kinetic stability: resistance to sodium dodecyl sulphate suggests a central role for rigidity and a bias toward beta-sheet structure. Biochemistry 43:11248–11254

    Article  Google Scholar 

  • Mehta R, Gantz DL, Gusky O (2003) Human plasma high-density lipoproteins are stabilized by kinetic factors. J Mol Biol 328:183–192

    Article  Google Scholar 

  • Muñoz V, Sanchez-Ruiz JM (2004) Exploring protein-folding ensembles: a variable-barrier model for the analysis of equilibrium unfolding experiments. Proc Natl Acad Sci USA 101:17646–17651

    Article  ADS  Google Scholar 

  • Myers JK, Pace CN, Scholtz JM (1995) Denaturant m values and heat capacity changes: relation to changes in accessible surface areas of protein unfolding. Protein Sci 4:2138–2148

    Article  Google Scholar 

  • Naganathan AN, Perez-Jimenez R, Sanchez-Ruiz JM, Muñoz V (2005) Robustness of downhill folding: guidelines for the analysis of equilibrium folding experiments on small proteins. Biochemistry 44:7435–7449

    Article  Google Scholar 

  • Oliva FY, Muñoz V (2004) A simple thermodynamic test to discriminate between two-state and downhill folding. J Am Chem Soc 126:8596–8597

    Article  Google Scholar 

  • Perez-Jimenez R, Godoy-Ruiz R, Ibarra-Molero B, Sanchez-Ruiz JM (2004) The efficiency of different salts to screen charge interactions in proteins: a Hofmeister effect? Biophys J 86:2414–2429

    Article  Google Scholar 

  • Persikov AV, Brodsky B (2000) Unstable molecules from stable tissues. Proc Natl Acad Sci USA 99:1101–1103

    Article  Google Scholar 

  • Petrassi MM, Johnson SM, Purkey HE, Chiang KP, Walkup T, Jinag X, Powers ET, Kelly JW (2005) Potent and selective structure-based dibenzofuran inhibitors of transthyretin amylodogenedis: kinetic stabilization of the native state. J Am Chem Soc 127:6662–6671

    Article  Google Scholar 

  • Plaza del Pino IM, Pace CN, Freire E (1992) Temperature and guanidinium chloride dependence of the structural stability of ribonuclease T1. Biochemistry 31:11196–11202

    Article  Google Scholar 

  • Plaza del Pino IM, Ibarra-Molero B, Sanchez-Ruiz JM (2000) Lower kinetic limit to protein thermal stability: a proposal regarding protein stability in vivo and its relation with misfolding diseases. Proteins 40:58–70

    Article  Google Scholar 

  • Plotnikov VV, Brandts JM, Lin LN, Brandts JF (1997) A new ultrasensitive scanning calorimeter. Anal Biochem 250:237–244

    Article  Google Scholar 

  • Privalov PL (1979) Stability of proteins: Small globular proteins. Adv Protein Chem 33:167–241

    Article  Google Scholar 

  • Privalov PL (1980) Scanning microcalorimeters for studying macromolecules. Pure Appl Chem 52:479–497

    Article  Google Scholar 

  • Privalov PL (1982) Stability of proteins. Proteins which do not present a single cooperative system. Adv Protein Chem 35:1–104

    Article  Google Scholar 

  • Privalov PL (1989) Thermodynamic problems of protein structure. Annu Rev Biophys Biophys Chem 18:47–69

    Article  Google Scholar 

  • Ramsay G, Freire E (1989) Linked thermal and solute perturbation analysis of cooperative domain interactions in proteins. Structural stability of diphtheria toxin. Biochemistry 29:8677–8683

    Article  Google Scholar 

  • Robertson A, Murphy KP (1997) Protein structure and the energetics of protein stability. Chem Rev 97:1251–1268

    Article  Google Scholar 

  • Robic S, Guzman-Casado M, Sanchez-Ruiz JM, Marqusee S (2003) Role of residual structure in the unfolded state of a thermophilic protein. Proc Natl Acad Sci USA 100:11345–11349

    Article  ADS  Google Scholar 

  • Rosgen J, Hinz HJ (2001) Folding energetics of ligand binding proteins. I. Theoretical model. J Mol Biol 306:825–835

    Article  Google Scholar 

  • Rosssengarth A, Rosgen J, Hinz HJ, Gerke V (2001) Folding energetics of ligand binding proteins. II. Cooperative binding of Ca2+ to annexin. J Mol Biol 306:825–835

    Article  Google Scholar 

  • Sanchez-Ruiz JM (1992) A theoretical analysis of Lumry-Eyring models in differential scanning calorimetry. Biophys J 61:921–935

    Article  Google Scholar 

  • Sanchez-Ruiz JM (1995) Differential scanning calorimetry of proteins. Subcell Biochem 24:133–176

    Google Scholar 

  • Sanchez-Ruiz JM, Mateo PL (1987) Differential scanning calorimetry of membrane proteins. Revis Biol Celular 11:15–45

    Google Scholar 

  • Schnyrov VL, Zhadan GG, Cobaleda C, Muñoz-Barroso I, Villar E (1997) A differential scanning calorimetric study of Newcastle disease virus: identification of proteins involved in thermal transitions. Arch Biochem Biophys 341:89–97

    Article  Google Scholar 

  • Shortle D, Ackerman MS (2001) Persistence of native-like topology in a denatured protein in 8 M urea. Science 293:487–489

    Article  Google Scholar 

  • Thórólfsson M, Ibarra-Molero B, Fojan P, Petersen SB, Sanchez-Ruiz JM, Martínez A (2002) L-Phenylalanine binding and domain organization in human phenylalanine hydroxylase: a differential scanning calorimetry study. Biochemistry 41:7573–7585

    Article  Google Scholar 

  • Vogl T, Jattzke C, Hinz HJ, Benz J, Huber R (1997) Thermodynamic stability of annexin VE17G: equilibrium parameters from an irreversible unfolding transition. Biochemistry 36:1657–1668

    Article  Google Scholar 

  • Wiseman RL, Johnson SM, Kelker MS, Foss T, Wilson IA, Kelly JW (2005) Kinetic stabilization of an oligomeric protein by a single ligand event. J Am Chem Soc 127:5540–5541

    Article  Google Scholar 

  • Zhou YQ, Hall CK, Karplus M (1999) The calorimetric criterion for a two-state process revisited. Protein Sci 8:1064–1074

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ibarra-Molero, B., Sanchez-Ruiz, J.M. (2006). Differential Scanning Calorimetry of Proteins: an Overview and Some Recent Developments. In: Arrondo, J.L.R., Alonso, A. (eds) Advanced Techniques in Biophysics. Springer Series in Biophysics, vol 10. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-30786-9_2

Download citation

Publish with us

Policies and ethics