Skip to main content

B Cell Recruitment and Selection in Mouse GALT Germinal Centers

  • Chapter
Gut-Associated Lymphoid Tissues

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 308))

Abstract

In conventionally reared mice germinal centers (GCs) are chronically induced in Peyer’s patches (PP), mesenteric lymph node (MLN), and isolated lymphoid follicles (ILF) of gut-associated lymphoid tissues (GALT), as a result of continuous B cell stimulation by commensal bacteria. It is generally thought that BCR-mediated antigen recognition controls the recruitment and thus selection of B cells within GALT GCs. However, recent results challenge this view and suggest that engagement of innate immune receptors by microbial antigens promotes B cell recruitment to, and maintenance within, the GC, irrespective of BCR specificity. We propose a scenario in which microbial determinants presented by follicular dendritic cells (FDCs) to innate receptors on B cells within the GC support the survival and concomitant expansion of somatically mutated, IgA-class-switched B cell clones expressing a variety of BCR specificities. From this pool, B cell mutants recognizing gut-derived antigens through their BCR are either, in GCs, drawn into the process of affinity maturation, or, in the lamina propria (LP) of the gut, locally selected to differentiate into plasmablasts, thus contributing to the continuous production of IgA antibodies required for an efficient protection against commensal and pathogenic microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akira S, Takeda K (2004). Toll-like receptor signalling. Nat Rev Immunol 4, 499–511.

    Article  PubMed  CAS  Google Scholar 

  • Becker RS, Knight KL (1990). Somatic diversification of immunoglobulin heavy chain VDJ genes: evidence for somatic gene conversion in rabbits. Cell 63, 987–997.

    Article  PubMed  CAS  Google Scholar 

  • Bos NA, Bun JC, Popma SH, Cebra ER, Deenen GJ, van der Cammen MJ, Kroese FG, Cebra JJ (1996). Monoclonal immunoglobulin A derived from peritoneal B cells is encoded by both germ line and somatically mutated VH genes and is reactive with commensal bacteria. Infect Immun 64, 616–623.

    PubMed  CAS  Google Scholar 

  • Brigl M, Brenner MB (2004). CD1: antigen presentation and T cell function. Annu Rev Immunol 22, 817–890.

    Article  PubMed  CAS  Google Scholar 

  • Brigl M, Bry L, Kent SC, Gumperz JE, Brenner MB (2003). Mechanism of CD1d-restricted natural killer T cell activation duringmicrobial infection. Nat Immunol 4, 1230–1237.

    Article  PubMed  CAS  Google Scholar 

  • Caldwell RG, Wilson JB, Anderson SJ, Longnecker R (1998). Epstein-Barr virus LMP2A drives B cell development and survival in the absence of normal B cell receptor signals. Immunity 9, 405–411.

    Article  PubMed  CAS  Google Scholar 

  • Casola S, Otipoby KL, Alimzhanov M, Humme S, Uyttersprot N, Kutok JL, Carroll MC, Rajewsky K (2004). B cell receptor signal strength determines B cell fate. Nat Immunol 5, 317–327.

    Article  PubMed  CAS  Google Scholar 

  • Cazac BB, Roes J (2000). TGF-β receptor controls B cell responsiveness and induction of IgA in vivo. Immunity 13, 443–451.

    Article  PubMed  CAS  Google Scholar 

  • Cebra JJ (1999). Influences of microbiota on intestinal immune system development. Am J Clin Nutr 69, 1046S–1051S.

    PubMed  CAS  Google Scholar 

  • Craig SW, Cebra JJ (1971). Peyer’s patches: an enriched source of precursors for IgA-producing immunocytes in the rabbit. J Exp Med 134, 188–200.

    Article  PubMed  CAS  Google Scholar 

  • Fagarasan S, Kinoshita K, Muramatsu M, Ikuta K, Honjo T (2001). In situ class switching and differentiation to IgA-producing cells in the gut lamina propria. Nature 413, 639–643.

    Article  PubMed  CAS  Google Scholar 

  • Fagarasan S, Shinkura R, Kamata T, Nogaki F, Ikuta K, Honjo T (2000). Mechanism of B1 cell differentiation and migration in GALT. Curr Top Microbiol Immunol 252, 221–229.

    PubMed  CAS  Google Scholar 

  • Fruehling S, Longnecker R (1997). The immunoreceptor tyrosine-based activation motif of Epstein-Barr virus LMP2A is essential for blocking BCR-mediated signal transduction. Virology 235, 241–251.

    Article  PubMed  CAS  Google Scholar 

  • Husband AJ, Gowans JL (1978). The origin and antigen-dependent distribution of IgA-containing cells in the intestine. J Exp Med 148, 1146–1160.

    Article  PubMed  CAS  Google Scholar 

  • Kaser A, Nieuwenhuis EE, Strober W, Mayer L, Fuss I, Colgan S, Blumberg RS (2004). Natural killer T cells in mucosal homeostasis. Ann N Y Acad Sci 1029, 154–168.

    Article  PubMed  CAS  Google Scholar 

  • Kearney JF, Lawton AR (1975). B lymphocyte differentiation induced by lipopolysaccharide. I. Generation of cells synthesizing four major immunoglobulin classes. J Immunol 115, 671–676.

    PubMed  CAS  Google Scholar 

  • Koni PA, Flavell RA (1999). Lymph node germinal centers form in the absence of follicular dendritic cell networks. J Exp Med 189, 855–864.

    Article  PubMed  CAS  Google Scholar 

  • Kraehenbuhl JP, Neutra MR (1992). Transepithelial transport and mucosal defence II: secretion of IgA. Trends Cell Biol 2, 170–174.

    Article  PubMed  CAS  Google Scholar 

  • Kraus M, Alimzhanov MB, Rajewsky N, Rajewsky K (2004). Survival of resting mature B lymphocytes depends on BCR signaling via the Igα/β heterodimer. Cell 117, 787–800.

    Article  PubMed  CAS  Google Scholar 

  • Krieg AM, Yi AK, Matson S, Waldschmidt TJ, Bishop GA, Teasdale R, Koretzky GA, Klinman DM(1995). CpG motifs in bacterial DNA trigger direct B-cell activation. Nature 374, 546–549.

    Article  PubMed  CAS  Google Scholar 

  • Kroese FG, Butcher EC, Stall AM, Lalor PA, Adams S, Herzenberg LA (1989). Many of the IgA producing plasma cells in murine gut are derived from self-replenishing precursors in the peritoneal cavity. Int Immunol 1, 75–84.

    PubMed  CAS  Google Scholar 

  • Kronenberg M (2004). Toward an understanding of NKT cell biology: progress and paradoxes. Annu Rev Immunol.

    Google Scholar 

  • Lanning D, Zhu X, Zhai SK, Knight KL (2000). Development of the antibody repertoire in rabbit: gut-associated lymphoid tissue, microbes, and selection. Immunol Rev 175, 214–228.

    Article  PubMed  CAS  Google Scholar 

  • MacLennan IC (1994). Germinal centers. Annu Rev Immunol 12, 117–139.

    Article  PubMed  CAS  Google Scholar 

  • Macpherson AJ, Gatto D, Sainsbury E, Harriman GR, Hengartner H, Zinkernagel RM (2000). A primitive T cell-independent mechanism of intestinal mucosal IgA responses to commensal bacteria. Science 288, 2222–2226.

    Article  PubMed  CAS  Google Scholar 

  • Macpherson AJ, Uhr T (2004). Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria. Science 303, 1662–1665.

    Article  PubMed  CAS  Google Scholar 

  • Madsen L, Labrecque N, Engberg J, Dierich A, Svejgaard A, Benoist C, Mathis D, Fugger L (1999). Mice lacking all conventional MHC class II genes. ProcNatl Acad Sci USA 96, 10338–10343.

    Article  CAS  Google Scholar 

  • Mattner J, Debord KL, Ismail N, Goff RD, Cantu C, 3rd, Zhou D, Saint-Mezard P, Wang V, Gao Y, Yin, N., et al. (2005). Exogenous and endogenous glycolipid antigens activate NKT cells during microbial infections. Nature 434, 525–529.

    Article  PubMed  CAS  Google Scholar 

  • Miller CL, Burkhardt AL, Lee JH, Stealey B, Longnecker R, Bolen JB, Kieff E (1995). Integral membrane protein 2 of Epstein-Barr virus regulates reactivation from latency through dominant negative effects on protein-tyrosine kinases. Immunity 2, 155–166.

    Article  PubMed  CAS  Google Scholar 

  • Muramatsu M, Kinoshita K, Fagarasan S, Yamada S, Shinkai Y, Honjo T (2000). Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 102, 553–563.

    Article  PubMed  CAS  Google Scholar 

  • Pospisil R, Mage RG (1998). Rabbit appendix: a site of development and selection of the B cell repertoire. Curr Top Microbiol Immunol 229, 59–70.

    PubMed  CAS  Google Scholar 

  • Rajewsky K (1996). Clonal selection and learning in the antibody system. Nature 381, 751–758.

    Article  PubMed  CAS  Google Scholar 

  • Rescigno M, Urbano M, Valzasina B, Francolini M, Rotta G, Bonasio R, Granucci F, Kraehenbuhl JP, Ricciardi-Castagnoli P (2001). Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat Immunol 2, 361–367.

    Article  PubMed  CAS  Google Scholar 

  • Reynaud CA, Anquez V, Grimal H, Weill JC (1987). A hyperconversion mechanism generates the chicken light chain preimmune repertoire. Cell 48, 379–388.

    Article  PubMed  CAS  Google Scholar 

  • Reynaud CA, Bertocci B, Dahan A, Weill JC (1994). Formation of the chicken B-cell repertoire: ontogenesis, regulation of Ig gene rearrangement, and diversification by gene conversion. Adv Immunol 57, 353–378.

    Article  PubMed  CAS  Google Scholar 

  • Reynaud CA, Mackay CR, Muller RG, Weill JC (1991). Somatic generation of diversity in a mammalian primary lymphoid organ: the sheep ileal Peyer’s patches. Cell 64, 995–1005.

    Article  PubMed  CAS  Google Scholar 

  • Reynaud CA, Weill JC (1996). Postrearrangement diversification processes in gutassociated lymphoid tissues. Curr Top Microbiol Immunol 212, 7–15.

    PubMed  CAS  Google Scholar 

  • Rhee KJ, Jasper PJ, Sethupathi P, Shanmugam M, Lanning D, Knight KL (2005). Positive selection of the peripheral B cell repertoire in gut-associated lymphoid tissues. J ExpMed 201, 55–62.

    Article  CAS  Google Scholar 

  • Rhee KJ, Sethupathi P, Driks A, Lanning DK, Knight KL (2004). Role of commensal bacteria in development of gut-associated lymphoid tissues and preimmune antibody repertoire. J Immunol 172, 1118–1124.

    PubMed  CAS  Google Scholar 

  • Sangster MY, Riberdy JM, Gonzalez M, Topham DJ, Baumgarth N, Doherty PC (2003). An early CD4+ T cell-dependent immunoglobulin A response to influenza infection in the absence of key cognate T-B interactions. J Exp Med 198, 1011–1021.

    Article  PubMed  CAS  Google Scholar 

  • Shikina T, Hiroi T, Iwatani K, Jang MH, Fukuyama S, Tamura M, Kubo T, Ishikawa H, Kiyono H (2004). IgA class switch occurs in the organized nasopharynx-and gut-associated lymphoid tissue, but not in the diffuse lamina propria of airways and gut. J Immunol 172, 6259–6264.

    PubMed  CAS  Google Scholar 

  • Shroff KE, Cebra JJ (1995). Development of mucosal humoral immune responses in germ-free (GF) mice. Adv ExpMed Biol 371A, 441–446.

    CAS  Google Scholar 

  • Shroff KE, Meslin K, Cebra JJ (1995). Commensal enteric bacteria engender a self-limiting humoral mucosal immune response while permanently colonizing the gut. Infect Immun 63, 3904–3913.

    PubMed  CAS  Google Scholar 

  • Stoel M, Jiang HQ, van Diemen CC, Bun JC, Dammers PM, Thurnheer MC, Kroese FG, Cebra JJ, Bos NA(2005). Restricted IgA repertoire in both B-1 and B-2 cell-derived gut plasmablasts. J Immunol 174, 1046–1054.

    PubMed  CAS  Google Scholar 

  • Talham GL, Jiang HQ, Bos NA, Cebra JJ (1999). Segmented filamentous bacteria are potent stimuli of a physiologically normal state of the murine gut mucosal immune system. Infect Immun 67, 1992–2000.

    PubMed  CAS  Google Scholar 

  • Thompson CB, Neiman PE (1987). Somatic diversification of the chicken immunoglobulin light chain gene is limited to the rearranged variable gene segment. Cell 48, 369–378.

    Article  PubMed  CAS  Google Scholar 

  • Thorley-Lawson DA (2001). Epstein-Barr virus: exploiting the immune system. Nat Rev Immunol 1, 75–82.

    Article  PubMed  CAS  Google Scholar 

  • Thurnheer MC, Zuercher AW, Cebra JJ, Bos NA (2003). B1 cells contribute to serum IgM, but not to intestinal IgA, production in gnotobiotic Ig allotype chimeric mice. J Immunol 170, 4564–4571.

    PubMed  CAS  Google Scholar 

  • Treiner E, Duban L, Moura IC, Hansen T, Gilfillan S, Lantz O (2005). Mucosal-associated invariant T (MAIT) cells: an evolutionarily conserved T cell subset. Microbes Infect, in press.

    Google Scholar 

  • Vajdy M, Kosco-Vilbois MH, Kopf M, Kohler G, Lycke N (1995). Impaired mucosal immune responses in interleukin 4-targeted mice. J Exp Med 181, 41–53.

    Article  PubMed  CAS  Google Scholar 

  • Walport MJ (2001). Complement. First of two parts. N Engl J Med 344, 1058–1066.

    Article  PubMed  CAS  Google Scholar 

  • Weinstein PD, Anderson AO, Mage RG (1994). Rabbit IgH sequences in appendix germinal centers: VH diversification by gene conversion-like and hypermutation mechanisms. Immunity 1, 647–659.

    Article  PubMed  CAS  Google Scholar 

  • Weinstein PD, Schweitzer PA, Cebra-Thomas JA, Cebra JJ (1991). Molecular genetic features reflecting the preference for isotype switching to IgA expression by Peyer’s patch germinal center B cells. Int Immunol 3, 1253–1263.

    PubMed  CAS  Google Scholar 

  • Weltzin R, Lucia-Jandris P, Michetti P, Fields BN, Kraehenbuhl JP, Neutra MR (1989). Binding and transepithelial transport of immunoglobulins by intestinal M cells: demonstration using monoclonal IgA antibodies against enteric viral proteins. J Cell Biol 108, 1673–1685.

    Article  PubMed  CAS  Google Scholar 

  • Zhou D, Mattner J, Cantu C, 3rd, Schrantz N, Yin N, Gao Y, Sagiv Y, Hudspeth K, Wu YP, Yamashita T, et al. (2004). Lysosomal glycosphingolipid recognition by NKT cells. Science 306, 1786–1789.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Casola, S., Rajewsky, K. (2006). B Cell Recruitment and Selection in Mouse GALT Germinal Centers. In: Honjo, T., Melchers, F. (eds) Gut-Associated Lymphoid Tissues. Current Topics in Microbiology and Immunology, vol 308. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-30657-9_7

Download citation

Publish with us

Policies and ethics