Skip to main content

Lymphoid Tissue Inducer Cells in Intestinal Immunity

  • Chapter
Gut-Associated Lymphoid Tissues

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 308))

Abstract

During fetal development, lymphoid tissue inducer cells (LTis) seed the developing lymph node and Peyer’s patch anlagen and initiate the formation of both types of lymphoid organs. In the adult, a similar population of cells, termed lymphoid tissue inducer-like cells (LTi-like cells), supports the formation of organized gut-associated lymphoid tissue (GALT) in the intestine, including both isolated lymphoid follicles (ILFs) and cryptopatches (CPs). Both LTi and LTi-like cells require expression of the transcription factor RORγt for their differentiation and function, and mice lacking RORγt lack lymph nodes, Peyer’s patches, and other organized GALT. In ILFs and cryptopatches, LTi-like cells are in close contact with different populations of intestinal dendritic cells (DCs), including a subpopulation recently shown to extend dendrites and sample luminal microflora. This interaction may allow for communication between the intestinal lumen and the immune cells in the lamina propria, which is necessary for maintaining homeostasis between the commensal microflora and the intestinal immune system. The potential functional implications of the organization of LTi-like cells, DCs, and lymphocytes in the lamina propria are discussed in the context of maintenance of homeostasis and of infectious diseases, particularly HIV infection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sonnenburg JL, Xu J, Leip DD, Chen CH, Westover BP, Weatherford J, Buhler JD, Gordon JI: Glycan foraging in vivo by an intestine-adapted bacterial symbiont. Science 2005, 307:1955–1959.

    Article  PubMed  CAS  Google Scholar 

  2. Macpherson AJ, Uhr T: Compartmentalization of the mucosal immune responses to commensal intestinal bacteria. Ann NY Acad Sci 2004, 1029:36–43.

    Article  PubMed  CAS  Google Scholar 

  3. Macpherson AJ, Harris NL: Interactions between commensal intestinal bacteria and the immune system. Nat Rev Immunol 2004, 4:478–485.

    Article  PubMed  CAS  Google Scholar 

  4. Macpherson AJ, Geuking MB, McCoy KD: Immune responses that adapt the intestinal mucosa to commensal intestinal bacteria. Immunology 2005, 115:153–162.

    Article  PubMed  CAS  Google Scholar 

  5. Eberl G, Marmon S, Sunshine MJ, Rennert PD, Choi Y, Littman DR: An essential function for the nuclear receptor RORγt in the generation of fetal lymphoid tissue inducer cells. Nat Immunol 2004, 5:64–73.

    Article  PubMed  CAS  Google Scholar 

  6. Eberl G, Littman DR: Thymic origin of intestinal αβ T cells revealed by fate mapping of RORγt+ Cells. Science 2004, 305:248–251.

    Google Scholar 

  7. Littman DR, Sun Z, Unutmaz D, Sunshine MJ, Petrie HT, Zou YR: Role of the nuclear hormone receptor ROR γ in transcriptional regulation, thymocyte survival, and lymphoid organogenesis. Cold Spring Harb Symp Quant Biol 1999, 64:373–381.

    Article  PubMed  CAS  Google Scholar 

  8. He YW, Deftos ML, Ojala EW, Bevan MJ: RORγ t, a novel isoform of an orphan receptor, negatively regulates Fas ligand expression and IL-2 production in T cells. Immunity 1998, 9:797–806.

    Article  PubMed  CAS  Google Scholar 

  9. Sun Z, Unutmaz D, Zou YR, Sunshine MJ, Pierani A, Brenner-Morton S, Mebius RE, Littman DR: Requirement for RORγ in thymocyte survival and lymphoid organ development. Science 2000, 288:2369–2373.

    Article  PubMed  CAS  Google Scholar 

  10. Guo J, Hawwari A, Li H, Sun Z, Mahanta SK, Littman DR, Krangel MS, He YW: Regulation of the TCRα repertoire by the survival window of CD4+CD8+ thymocytes. Nat Immunol 2002, 3:469–476.

    Article  PubMed  Google Scholar 

  11. Yokota Y, Mansouri A, Mori S, Sugawara S, Adachi S, Nishikawa S, Gruss P: Development of peripheral lymphoid organs and natural killer cells depends on the helix-loop-helix inhibitor Id2. Nature 1999, 397:702–706.

    Article  PubMed  CAS  Google Scholar 

  12. Mebius RE, Miyamoto T, Christensen J, Domen J, Cupedo T, Weissman IL, Akashi K: The fetal liver counterpart of adult common lymphoid progenitors gives rise to all lymphoid lineages, CD45+CD4+CD3− cells, as well as macrophages. J Immunol 2001, 166:6593–6601.

    PubMed  CAS  Google Scholar 

  13. Mebius RE, Rennert P, Weissman IL: Developing lymph nodes collect CD4+CD3− LTβ+ cells that can differentiate to APC, NK cells, and follicular cells but not T or B cells. Immunity 1997, 7:493–504.

    Article  PubMed  CAS  Google Scholar 

  14. Yoshida H, Honda K, Shinkura R, Adachi S, Nishikawa S, Maki K, Ikuta K, Nishikawa SI: IL-7 receptor α+ CD3 cells in the embryonic intestine induces the organizing center of Peyer’s patches. Int Immunol 1999, 11:643–655.

    Article  PubMed  CAS  Google Scholar 

  15. Adachi S, Yoshida H, Kataoka H, Nishikawa S: Three distinctive steps in Peyer’s patch formation of murine embryo. Int Immunol 1997, 9:507–514.

    Article  PubMed  CAS  Google Scholar 

  16. Eberl G, Littman DR: The role of the nuclear hormone receptor RORγt in the development of lymph nodes and Peyer’s patches. Immunol Rev 2003, 195:81–90.

    Article  PubMed  CAS  Google Scholar 

  17. Yamamoto M, Kweon MN, Rennert PD, Hiroi T, Fujihashi K, McGhee JR, Kiyono H: Role of gut-associated lymphoreticular tissues in antigen-specific intestinal IgA immunity. J Immunol 2004, 173:762–769.

    PubMed  CAS  Google Scholar 

  18. Yamamoto M, Rennert P, McGhee JR, Kweon MN, Yamamoto S, Dohi T, Otake S, Bluethmann H, Fujihashi K, Kiyono H: Alternate mucosal immune system: organized Peyer’s patches are not required for IgA responses in the gastrointestinal tract. J Immunol 2000, 164:5184–5191.

    PubMed  CAS  Google Scholar 

  19. Fagarasan S, Kinoshita K, Muramatsu M, Ikuta K, Honjo T: In situ class switching and differentiation to IgA-producing cells in the gut lamina propria. Nature 2001, 413:639–643.

    Article  PubMed  CAS  Google Scholar 

  20. Hamada H, Hiroi T, Nishiyama Y, Takahashi H, Masunaga Y, Hachimura S, Kaminogawa S, Takahashi-Iwanaga H, Iwanaga T, Kiyono H, et al.: Identification of multiple isolated lymphoid follicles on the antimesenteric wall of the mouse small intestine. J Immunol 2002, 168:57–64.

    PubMed  CAS  Google Scholar 

  21. Jang MH, Kweon MN, Iwatani K, Yamamoto M, Terahara K, Sasakawa C, Suzuki T, Nochi T, Yokota Y, Rennert PD, et al.: Intestinal villous M cells: an antigen entry site in the mucosal epithelium. Proc Natl Acad Sci USA 2004, 101:6110–6115.

    Article  PubMed  CAS  Google Scholar 

  22. Niess JH, Brand S, Gu X, Landsman L, Jung S, McCormick BA, Vyas JM, Boes M, Ploegh HL, Fox JG, et al.: CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance. Science 2005, 307:254–258.

    Article  PubMed  CAS  Google Scholar 

  23. Rescigno M, Urbano M, Valzasina B, Francolini M, Rotta G, Bonasio R, Granucci F, Kraehenbuhl JP, Ricciardi-Castagnoli P: Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat Immunol 2001, 2:361–367.

    Article  PubMed  CAS  Google Scholar 

  24. Macpherson AJ, Uhr T: Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria. Science 2004, 303:1662–1665.

    Article  PubMed  CAS  Google Scholar 

  25. Spiekermann GM, Finn PW, Ward ES, Dumont J, Dickinson BL, Blumberg RS, Lencer WI: Receptor-mediated immunoglobulin G transport across mucosal barriers in adult life: functional expression of FcRn in the mammalian lung. J Exp Med 2002, 196:303–310.

    Article  PubMed  CAS  Google Scholar 

  26. Cornes JS: Peyer’s patches in the human gut. Proc R Soc Med 1965, 58:716.

    PubMed  CAS  Google Scholar 

  27. Owen RL, Jones AL: Epithelial cell specialization within human Peyer’s patches: an ultrastructural study of intestinal lymphoid follicles. Gastroenterology 1974, 66:189–203.

    PubMed  CAS  Google Scholar 

  28. Bjerke K, Brandtzaeg P, Fausa O: T cell distribution is different in follicle-associated epithelium of human Peyer’s patches and villous epithelium. Clin Exp Immunol 1988, 74:270–275.

    PubMed  CAS  Google Scholar 

  29. Yamanaka T, Straumfors A, Morton H, Fausa O, Brandtzaeg P, Farstad I: M cell pockets of human Peyer’s patches are specialized extensions of germinal centers. Eur J Immunol 2001, 31:107–117.

    Article  PubMed  CAS  Google Scholar 

  30. Owen RL: Sequential uptake of horseradish peroxidase by lymphoid follicle epithelium of Peyer’s patches in the normal unobstructed mouse intestine: an ultra-structural study. Gastroenterology 1977, 72:440–451.

    PubMed  CAS  Google Scholar 

  31. Sicinski P, Rowinski J, Warchol JB, Jarzabek Z, Gut W, Szczygiel B, Bielecki K, Koch G: Poliovirus type 1 enters the human host through intestinal M cells. Gastroenterology 1990, 98:56–58.

    PubMed  CAS  Google Scholar 

  32. Wolf JL, Rubin DH, Finberg R, Kauffman RS, Sharpe AH, Trier JS, Fields BN: Intestinal M cells: a pathway for entry of reovirus into the host. Science 1981, 212:471–472.

    PubMed  CAS  Google Scholar 

  33. Kelsall BL, Strober W: Distinct populations of dendritic cells are present in the subepithelial dome and T cell regions of the murine Peyer’s patch. J Exp Med 1996, 183:237–247.

    Article  PubMed  CAS  Google Scholar 

  34. Iwasaki A, Kelsall BL: Unique functions of CD11b+, CD8 α+, and double-negative Peyer’s patch dendritic cells. J Immunol 2001, 166:4884–4890.

    PubMed  CAS  Google Scholar 

  35. Iwasaki A, Kelsall BL: Freshly isolated Peyer’s patch, but not spleen, dendritic cells produce interleukin 10 and induce the differentiation of T helper type 2 cells. J Exp Med 1999, 190:229–239.

    Article  PubMed  CAS  Google Scholar 

  36. Williamson E, Bilsborough JM, Viney JL: Regulation of mucosal dendritic cell function by receptor activator of NF-κ B (RANK)/RANK ligand interactions: impact on tolerance induction. J Immunol 2002, 169:3606–3612.

    PubMed  CAS  Google Scholar 

  37. Craig SW, Cebra JJ: Peyer’s patches: an enriched source of precursors for IgA-producing immunocytes in the rabbit. J Exp Med 1971, 134:188–200.

    Article  PubMed  CAS  Google Scholar 

  38. Guy-Grand D, Griscelli C, Vassalli P: The gut-associated lymphoid system: nature and properties of the large dividing cells. Eur J Immunol 1974, 4:435–443.

    PubMed  CAS  Google Scholar 

  39. Golovkina TV, Shlomchik M, Hannum L, Chervonsky A: Organogenic role of B lymphocytes in mucosal immunity. Science 1999, 286:1965–1968.

    Article  PubMed  CAS  Google Scholar 

  40. Mora JR, Bono MR, Manjunath N, Weninger W, Cavanagh LL, Rosemblatt M, Von Andrian UH: Selective imprinting of gut-homing T cells by Peyer’s patch dendritic cells. Nature 2003, 424:88–93.

    Article  PubMed  CAS  Google Scholar 

  41. Iwata M, Hirakiyama A, Eshima Y, Kagechika H, Kato C, Song SY: Retinoic acid imprints gut-homing specificity on T cells. Immunity 2004, 21:527–538.

    Article  PubMed  CAS  Google Scholar 

  42. Lorenz RG, Chaplin DD, McDonald KG, McDonough JS, Newberry RD: Isolated lymphoid follicle formation is inducible and dependent upon lymphotoxin-sufficient B lymphocytes, lymphotoxin β receptor, and TNF receptor I function. J Immunol 2003, 170:5475–5482.

    PubMed  CAS  Google Scholar 

  43. Lorenz RG, Newberry RD: Isolated lymphoid follicles can function as sites for induction of mucosal immune responses. Ann NY Acad Sci 2004, 1029:44–57.

    Article  PubMed  CAS  Google Scholar 

  44. Newberry RD, McDonough JS, McDonald KG, Lorenz RG: Postgestational lymphotoxin/lymphotoxin β receptor interactions are essential for the presence of intestinal B lymphocytes. J Immunol 2002, 168:4988–4997.

    PubMed  CAS  Google Scholar 

  45. Fagarasan S, Muramatsu M, Suzuki K, Nagaoka H, Hiai H, Honjo T: Critical roles of activation-induced cytidine deaminase in the homeostasis of gut flora. Science 2002, 298:1424–1427.

    Article  PubMed  CAS  Google Scholar 

  46. Kanamori Y, Ishimaru K, Nanno M, Maki K, Ikuta K, Nariuchi H, Ishikawa H: Identification of novel lymphoid tissues in murine intestinal mucosa where clusters of c-kit+ IL-7R+ Thy1+ lympho-hemopoietic progenitors develop. J Exp Med 1996, 184:1449–1459.

    Article  PubMed  CAS  Google Scholar 

  47. Oida T, Suzuki K, Nanno M, Kanamori Y, Saito H, Kubota E, Kato S, Itoh M, Kaminogawa S, Ishikawa H: Role of gut cryptopatches in early extrathymic maturation of intestinal intraepithelial T cells. J Immunol 2000, 164:3616–3626.

    PubMed  CAS  Google Scholar 

  48. Saito H, Kanamori Y, Takemori T, Nariuchi H, Kubota E, Takahashi-Iwanaga H, Iwanaga T, Ishikawa H: Generation of intestinal T cells from progenitors residing in gut cryptopatches. Science 1998, 280:275–278.

    Article  PubMed  CAS  Google Scholar 

  49. Suzuki K, Oida T, Hamada H, Hitotsumatsu O, Watanabe M, Hibi T, Yamamoto H, Kubota E, Kaminogawa S, Ishikawa H: Gut cryptopatches: direct evidence of extrathymic anatomical sites for intestinal T lymphopoiesis. Immunity 2000, 13:691–702.

    Article  PubMed  CAS  Google Scholar 

  50. Taylor RT, Lugering A, Newell KA, Williams IR: Intestinal cryptopatch formation in mice requires lymphotoxin α and the lymphotoxin β receptor. J Immunol 2004, 173:7183–7189.

    PubMed  CAS  Google Scholar 

  51. Pabst O, Herbrand H, Worbs T, Friedrichsen M, Yan S, Hoffmann MW, Korner H, Bernhardt G, Pabst R, Forster R: Cryptopatches and isolated lymphoid follicles: dynamic lymphoid tissues dispensable for the generation of intraepithelial lymphocytes. Eur J Immunol 2005, 35:98–107.

    Article  PubMed  CAS  Google Scholar 

  52. Zhang N, Guo J, He YW: Lymphocyte accumulation in the spleen of retinoic acid receptor-related orphan receptor γ-deficient mice. J Immunol 2003, 171:1667–1675.

    PubMed  CAS  Google Scholar 

  53. Kang HS, Chin RK, Wang Y, Yu P, Wang J, Newell KA, Fu YX: Signaling via LTβR on the lamina propria stromal cells of the gut is required for IgA production. Nat Immunol 2002, 3:576–582.

    Article  PubMed  CAS  Google Scholar 

  54. Suzuki K, Meek B, Doi Y, Honjo T, Fagarasan S: Two distinctive pathways for recruitment of naïve and primed IgM+ B cells to the gut lamina propria. Proc Natl Acad Sci U S A 2005, 102:2482–2486.

    Article  PubMed  CAS  Google Scholar 

  55. Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F, Edberg S, Medzhitov R: Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell 2004, 118:229–241.

    Article  PubMed  CAS  Google Scholar 

  56. Geijtenbeek TB, Kwon DS, Torensma R, van Vliet SJ, van Duijnhoven GC, Middel J, Cornelissen IL, Nottet HS, KewalRamani VN, Littman DR, et al.: DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells. Cell 2000, 100:587–597.

    Article  PubMed  CAS  Google Scholar 

  57. Kwon DS, Gregorio G, Bitton N, Hendrickson WA, Littman DR: DC-SIGN-mediated internalization of HIV is required for trans-enhancement of T cell infection. Immunity 2002, 16:135–144.

    Article  PubMed  CAS  Google Scholar 

  58. Mattapallil JJ, Douek DC, Hill B, Nishimura Y, Martin M, Roederer M: Massive infection and loss of memory CD4+ T cells in multiple tissues during acute SIV infection. Nature 2005, 434:1093–1097.

    Article  PubMed  CAS  Google Scholar 

  59. Schneider T, Jahn HU, Schmidt W, Riecken EO, Zeitz M, Ullrich R: Loss of CD4 T lymphocytes in patients infected with human immunodeficiency virus type 1 is more pronounced in the duodenal mucosa than in the peripheral blood. Berlin Diarrhea/Wasting Syndrome Study Group. Gut 1995, 37:524–529.

    PubMed  CAS  Google Scholar 

  60. Veazey RS, DeMaria M, Chalifoux LV, Shvetz DE, Pauley DR, Knight HL, Rosenzweig M, Johnson RP, Desrosiers RC, Lackner AA: Gastrointestinal tract as a major site of CD4+ T cell depletion and viral replication in SIV infection. Science 1998, 280:427–431.

    Article  PubMed  CAS  Google Scholar 

  61. Li Q, Duan L, Estes JD, Ma ZM, Rourke T, Wang Y, Reilly C, Carlis J, Miller CJ, Haase AT: Peak SIV replication in resting memory CD4+ T cells depletes gut lamina propria CD4+ T cells. Nature 2005, 434:1148–1152.

    PubMed  CAS  Google Scholar 

  62. Veazey RS, Marx PA, Lackner AA: Vaginal CD4+ T cells express high levels of CCR5 and are rapidly depleted in simian immunodeficiency virus infection. J Infect Dis 2003, 187:769–776.

    Article  PubMed  CAS  Google Scholar 

  63. Vajdy M, Veazey R, Tham I, deBakker C, Westmoreland S, Neutra M, Lackner A: Early immunologic events in mucosal and systemic lymphoid tissues after intrarectal inoculation with simian immunodeficiency virus. J Infect Dis 2001, 184:1007–1014.

    Article  PubMed  CAS  Google Scholar 

  64. Mehandru S, Poles MA, Tenner-Racz K, Horowitz A, Hurley A, Hogan C, Boden D, Racz P, Markowitz M: Primary HIV-1 infection is associated with preferential depletion of CD4+ T lymphocytes from effector sites in the gastrointestinal tract. J Exp Med 2004, 200:761–770.

    Article  PubMed  CAS  Google Scholar 

  65. Brenchley JM, Schacker TW, Ruff LE, Price DA, Taylor JH, Beilman GJ, Nguyen PL, Khoruts A, Larson M, Haase AT, et al.: CD4+ T cell depletion during all stages of HIV disease occurs predominantly in the gastrointestinal tract. J Exp Med 2004, 200:749–759.

    Article  PubMed  CAS  Google Scholar 

  66. Luther SA, Lopez T, Bai W, Hanahan D, Cyster JG: BLC expression in pancreatic islets causes B cell recruitment and lymphotoxin-dependent lymphoid neogenesis. Immunity 2000, 12:471–481.

    Article  PubMed  CAS  Google Scholar 

  67. Spahn TW, Herbst H, Rennert PD, Lugering N, Maaser C, Kraft M, Fontana A, Weiner HL, Domschke W, Kucharzik T: Induction of colitis in mice deficient of Peyer’s patches and mesenteric lymph nodes is associated with increased disease severity and formation of colonic lymphoid patches. Am J Pathol 2002, 161:2273–2282.

    PubMed  Google Scholar 

  68. Kaiserling E: Newly-formed lymph nodes in the submucosa in chronic inflammatory bowel disease. Lymphology 2001, 34:22–29.

    PubMed  CAS  Google Scholar 

  69. Yeung MM, Melgar S, Baranov V, Oberg A, Danielsson A, Hammarstrom S, Hammarstrom ML: Characterisation of mucosal lymphoid aggregates in ulcerative colitis: immune cell phenotype and TcR-γδ expression. Gut 2000, 47:215–227.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ivanov, I.I., Diehl, G.E., Littman, D.R. (2006). Lymphoid Tissue Inducer Cells in Intestinal Immunity. In: Honjo, T., Melchers, F. (eds) Gut-Associated Lymphoid Tissues. Current Topics in Microbiology and Immunology, vol 308. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-30657-9_3

Download citation

Publish with us

Policies and ethics