Advertisement

Interactive and Cooperative Robot Assistants

  • Rüdiger Dillmann
  • Raoul D. Zöllner
Part of the Signals and Communication Technology book series (SCT)

Keywords

Humanoid Robot Robot System Manipulation Task Robot Assistant Robot Program 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Albiez, J., Giesler, B., Lellmann, J., Zöllner, J., and Dillmann, R. Virtual Immersion for Tele-Controlling a Hexapod Robot. In Proceedings of the 8th International Conference on Climbing and Walking Robots (CLAWAR). September 2005.Google Scholar
  2. 2.
    Alissandrakis, A., Nehaniv, C., and Dautenhahn, K. Imitation with ALICE: Learning to Imitate Corresponding Actions Across Dissimilar Embodiments. IEEE Transactions on Systems, Man, and Cybernetics, 32(4):482–496, 2002.CrossRefGoogle Scholar
  3. 3.
    Anderson, J. Kognitive Psychologie, 2. Auflage. Spektrum der Wissenschaft Verlagsgesellschaft mbH, Heidelberg, 1989.Google Scholar
  4. 4.
    Arbib, M., Iberall, T., Lyons, D., and Linscheid, R. Hand Function and Neocortex, chapter Coordinated control programs for movement of the hand, pages 111–129. A. Goodwin and T. Darian-Smith (Hrsg.), Springer-Verlag, 1985.Google Scholar
  5. 5.
    Archibald, C. and Petriu, E. Computational Paradigm for Creating and Executing Sensorbased Robot Skills. 24th International Symposium on Industrial Robots, pages 401–406, 1993.Google Scholar
  6. 6.
    Asada, H. and Liu, S. Transfer of Human Skills to Neural Net Robot Controllers. In IEEE International Conference on Robotics and Automation (ICRA), pages 2442–2448. 1991.Google Scholar
  7. 7.
    Asfour, T., Berns, K., and Dillmann, R. The Humanoid Robot ARMAR: Design and Control. In IEEE-RAS International Conference on Humanoid Robots (Humanoids 2000), volume 1, pages 897–904. MIT, Boston, USA, Sep. 7–8 2000.Google Scholar
  8. 8.
    Asfour, T. and Dillmann, R. Human-like Motion of a Humanoid Robot Arm Based on a Closed-Form Solution of the Inverse Kinematics Problem. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003), volume 1, pages 897–904. Las Vegas, USA, Oct. 27–31 2003.Google Scholar
  9. 9.
    Bauckhage, C., Kummmert, F., and Sagerer, G. Modeling and Recognition of Assembled Objects. In IEEE 24th Annual Conference of the Industrial Electronics Society, volume 4, pages 2051–2056. Aachen, September 1998.Google Scholar
  10. 10.
    Bergener, T., Bruckhoff, C., Dahm, P., Janßen, H., Joublin, F., Menzner, R., Steinhage, A., and von Seelen, W. Complex Behavior by Means of Dynamical Systems for an Anthropomorphic Robot. Neural Networks, 12(7–8):1087–1099, 1999.CrossRefGoogle Scholar
  11. 11.
    Breazeal, C. Sociable Machines: Expressive Social Exchange Between Humans and Robots. Master’s thesis, Department of Electrical Engineering and Computer Science, MIT, 2000.Google Scholar
  12. 12.
    Brooks, R. The Cog Project. Journal of the Robotics Society of Japan Advanced Robotics, 15(7):968–970, 1997.Google Scholar
  13. 13.
    Bundesministerium für Bildung und Forschung. Leitprojekt Intelligente anthropomorphe Assistenzsysteme, 2000. Http://www.morpha.de.Google Scholar
  14. 14.
    Cutkosky, M. R. On Grasp Choice, Grasp Models, and the Design of Hands for Manufacturing Tasks. IEEE Transactions on Robotics and Automation, 5(3):269–279, 1989.MathSciNetCrossRefGoogle Scholar
  15. 15.
    Cypher, A. Watch what I do-Programming by Demonstration. MIT Press, Cambridge, 1993.Google Scholar
  16. 16.
    Dillmann, R., Rogalla, O., Ehrenmann, M., Zöllner, R., and Bordegoni, M. Learning Robot Behaviour and Skills based on Human Demonstration and Advice: the Machine Learning Paradigm. In 9th International Symposium of Robotics Research (ISRR 1999), pages 229–238. Snowbird, Utah, USA, 9.–12. Oktober 1999.Google Scholar
  17. 17.
    Dillmann, R., Zöllner, R., Ehrenmann, M., and and, O. R. Interactive Natural Programming of Robots: Introductory Overview. In Proceedings of the DREH 2002. Toulouse, France, Octobre 2002.Google Scholar
  18. 18.
    Ehrenmann, M., Ambela, D., Steinhaus, P., and Dillmann., R. A Comparison of Four Fast Vision-Based Object Recognition Methods for Programing by Demonstration Applications. In Proceedings of the 2000 International Conference on Robotics and Automation (ICRA), volume 1, pages 1862–1867. San Francisco, Kalifornien, USA, 24.–28. April 2000.Google Scholar
  19. 19.
    Ehrenmann, M., Rogalla, O., Zöllner, R., and Dillmann, R. Teaching Service Robots complex Tasks: Programming by Demonstration for Workshop and Household Environments. In Proceedings of the 2001 International Conference on Field and Service Robots (FSR), volume 1, pages 397–402. Helsinki, Finnland, 11.–13. Juni 2001.Google Scholar
  20. 20.
    Ehrenmann, M., Rogalla, O., Zöllner, R., and Dillmann, R. Analyse der Instrumentarien zur Belehrung und Kommandierung von Robotern. In Human Centered Robotic Systems (HCRS), pages 25–34. Karlsruhe, November 2002.Google Scholar
  21. 21.
    Ehrenmann, M., Zöllner, R., Knoop, S., and Dillmann, R. Sensor Fusion Approaches for Observation of User Actions in Programming by Demonstration. In Proceedings of the 2001 International Conference on Multi Sensor Fusion and Integration for Intelligent Systems (MFI), volume 1, pages 227–232. Baden-Baden, 19.–22. August 2001.CrossRefGoogle Scholar
  22. 22.
    Elliot, J. and Connolly, K. A Classification of Hand Movements. In Developmental Medicine and Child Neurology, volume 26, pages 283–296. 1984.CrossRefGoogle Scholar
  23. 23.
    Festo. Tron X web page, 2000. Http://www.festo.com.Google Scholar
  24. 24.
    Friedrich, H. Interaktive Programmierung von Manipulationssequenzen. Ph.D. thesis, Universität Karlsruhe, 1998.Google Scholar
  25. 25.
    Friedrich, H., Holle, J., and Dillmann, R. Interactive Generation of Flexible Robot Programs. In IEEE International Conference on Robotics and Automation. Leuven, Belgium, 1998.Google Scholar
  26. 26.
    Friedrich, H., Münch, S., Dillmann, R., Bocionek, S., and Sassin, M. Robot Programming by Demonstration: Supporting the Induction by Human Interaction. Machine Learning, pages 163–189, May/June 1996.Google Scholar
  27. 27.
    Fritsch, J., Lomker, F., Wienecke, M., and Sagerer, G. Detecting Assembly Actions by Scene Observation. In International Conference on Image Processing 2000, volume 1, pages 212–215. Vancouver, BC, Kanada, September 2000.CrossRefGoogle Scholar
  28. 28.
    Giesler, B., Salb, T., Steinhaus, P., and Dillmann, R. Using Augmented Reality to Interact with an Autonomous Mobile Platform. In IEEE International Conference on Robotics and Automation (ICRA 2004), volume 1, pages 1009–1014. New Orleans, USA, Oct. 27–31 2004.CrossRefGoogle Scholar
  29. 29.
    Hashimoto. Humanoid Robots in Waseda University-Hadaly-2 and Wabian. In IEEERAS International Conference on Humanoid Robots (Humanoids 2000), volume 1, pages 897–904. Cambridge, MA, USA, Sep. 7–8 2000.Google Scholar
  30. 30.
    Heise, R. Programming Robots by Example. Technical report, Department of Computer Science, The university of Calgary, 1992.Google Scholar
  31. 31.
    Honda Motor Co., L. Honda Debuts New Humanoid Robot “ASIMO”. New Technology allows Robot to walk like a Human. Press Release of November 20th, 2000, 2000. Http://world.honda.com/news/2000/c001120.html.Google Scholar
  32. 32.
    Ikeuchi, K. and Suehiro, T. Towards an Assembly Plan from Observation. In International Conference on Robotics and Automation, pages 2171–2177. 1992.Google Scholar
  33. 33.
    Ikeuchi, K. and Suehiro, T. Towards an Assembly Plan from Observation, Part I: Task Recognition with Polyhedral Objects. IEEE Transactions on Robotics and Automation, 10(3):368–385, 1994.CrossRefGoogle Scholar
  34. 34.
    Immersion. Cyberglove Specifications, 2004. Http://www.immersion.com.Google Scholar
  35. 35.
    Inaba, M. and Inoue, H. Robotics Research 5, chapter Vision Based Robot Programming, pages 129–136. MIT Press, Cambridge, Massachusetts, USA, 1990.Google Scholar
  36. 36.
    Jiar, Y., Wheeler, M., and Ikeuchi, K. Hand Action Perception and Robot Instruction. Technical report, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, 1996.Google Scholar
  37. 37.
    Jiar, Y., Wheeler, M., and Ikeuchi, K. Hand Action Perception and Robot Instruction. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, volume 3, pages 1586–93. 1996.CrossRefGoogle Scholar
  38. 38.
    Kaiser, M. Interaktive Akquisition elementarer Roboterfähigkeiten. Ph.D. thesis, Universität Karlsruhe (TH), Fakultät fär Informatik, 1996. Erschienen im Infix-Verlag, St. Augustin (DISKI 153).Google Scholar
  39. 39.
    Kanehiro, F., Kaneko, K., Fujiwara, K., Harada, K., Kajita, S., Yokoi, K., Hirukawa, H., Akachi, K., and Isozumi, T. KANTRA — Human-Machine Interaction for Intelligent Robots using Natural Language. In IEEE International Workshop on Robot and Human Communication, volume 4, pages 106–110. 1994.Google Scholar
  40. 40.
    Kang, S. and Ikeuchi, K. Temporal Segmentation of Tasks from Human Hand Motion. Technical Report CMU-CS-93-150, Computer Science Department, Carnegie Mellon University, Pittsburgh, PA, April 1993.Google Scholar
  41. 41.
    Kang, S. and Ikeuchi, K. Toward Automatic Robot Instruction from Perception: Mapping Human Grasps to Manipulator Grasps. Robotics and Automation, 13(1):81–95, Februar 1997.CrossRefGoogle Scholar
  42. 42.
    Kang, S. and Ikeuchi, K. Toward Automatic Robot Instruction from Perception: Mapping Human Grasps to Manipulator Grasps. Robotics and Automation, 13(1):81–95, Februar 1997.CrossRefGoogle Scholar
  43. 43.
    Kang, S. B. Robot Instruction by Human Demonstration. Ph.D. thesis, Carnegie Mellon University, Pittsburgh, PA, 1994.Google Scholar
  44. 44.
    Kang, S. B. and Ikeuchi, K. Determination of Motion Breakpoints in a Task Sequence from Human Hand Motion. In IEEE International Conference on Robotics and Automation (ICORA’94), volume 1, pages 551–556. San Diego, CA, USA, 1994.CrossRefGoogle Scholar
  45. 45.
    Kibertron. Kibertron Web Page, 2000. Http://www.kibertron.com.Google Scholar
  46. 46.
    Koeppe, R., Breidenbach, A., and Hirzinger, G. Skill Representation and Acquisition of Compliant Motions Using a Teach Device. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS’96), volume 1, pages 897–904. Pittsburgh, PA, USA, Aug. 5–9 1996.CrossRefGoogle Scholar
  47. 47.
    Kuniyoshi, Y., Inaba, M., and Inoue, H. Learning by Watching: Extracting Reusable Task Knowledge from Visual Observation of Human Performance. IEEE Transactions on Robotics and Automation, 10(6):799–822, 1994.CrossRefGoogle Scholar
  48. 48.
    Lee, C. and Xu, Y. Online, Interactive Learning of Gestures for Human/Robot Interfaces, Minneapolis, Minnesota. In Proceedings of the IEEE International Conference on Robotics and Automation, volume 4, pages 2982–2987. April 1996.Google Scholar
  49. 49.
    Menzner, R. and Steinhage, A. Control of an Autonnomous Robot by Keyword Speech. Technical report, Ruhr-Universität Bochum, April 2001. Seiten 49–51.Google Scholar
  50. 50.
    MetaMotion. Gypsy Specification. Meta Motion, 268 Bush St. 1, San Francisco, California 94104, USA, 2001. Http://www.MetaMotion.com/motion-capture/magnetic-motioncapture-2.htm.Google Scholar
  51. 51.
    Mitchell, T. Explanation-based Generalization-a unifying View. Machine Learning, 1:47–80, 1986.Google Scholar
  52. 52.
    Newtson, D. The Objective Basis of Behaviour Units. Journal of Personality and Social Psychology, 35(12):847–862, 1977.CrossRefGoogle Scholar
  53. 53.
    Onda, H., Hirukawa, H., Tomita, F., Suehiro, T., and Takase, K. Assembly Motion Teaching System using Position/Force Simulator—Generating Control Program. In 10th IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 389–396. Grenoble, Frankreich, 7.–11. September 1997.Google Scholar
  54. 54.
    Paul, G. and Ikeuchi, K. Modelling planar Assembly Tasks: Representation and Recognition. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Pittsburgh, Pennsylvania, volume 1, pages 17–22. 5.–9. August 1995.Google Scholar
  55. 55.
    Pomerleau, D. A. Efficient Training of Artificial Neural Networks for Autonomous Navigation. Neural Computation, 3(1):88–97, 1991.Google Scholar
  56. 56.
    Pomerleau, D. A. Neural Network Based Vision for Precise Control of a Walking Robot. Machine Learning, 15:125–135, 1994.Google Scholar
  57. 57.
    Rogalla, O., Ehrenmann, M., and Dillmann, R. A Sensor Fusion Approach for PbD. In Proc. of the IEEE/RSJ Conference Intelligent Robots and Systems, IROS’98, volume 2, pages 1040–1045. 1998.Google Scholar
  58. 58.
    Schaal, S. Is Imitation Learning the Route to Humanoid Robots? In Trends in Cognitive Scienes, volume 3, pages 323–242. 1999.CrossRefGoogle Scholar
  59. 59.
    Segre, A. Machine Learning of Assembly Plans. Kluwer Academic Publishers, 1989.Google Scholar
  60. 60.
    Steinhage, A. and Bergener, T. Learning by Doing: A Dynamic Architecture for Generating Adaptive Behavioral Sequences. In Proceedings of the Second International ICSC Symposium on Neural Computation (NC), pages 813–820. 2000.Google Scholar
  61. 61.
    Steinhage, A. and v. Seelen, W. Dynamische Systeme zur Verhaltensgenerierung eines anthropomorphen Roboters. Technical report, Institut für Neuroinformatik, Ruhr Universität Bochum, Bochum, Deutschland, 2000.Google Scholar
  62. 62.
    Takahashi, T. Time Normalization and Analysis Method in Robot Programming from Human Demonstration Data. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Minneapolis, USA, volume 1, pages 37–42. April 1996.Google Scholar
  63. 63.
    Toyota. Toyota Humanoid Robot Partners Web Page, 2000. Http://www.toyota.co.jp/en/special/robot/index.html.Google Scholar
  64. 64.
    Tung, C. and Kak, A. Automatic Learning of Assembly Tasks using a Dataglove System. In Proceedings of the International Conference on Intelligent Robots and Systems (IROS), pages 1–8. 1995.Google Scholar
  65. 65.
    Tung, C. P. and Kak, A. C. Automatic Learning of Assembly Tasks Using a Data-Glove System. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS’95), volume 1, pages 1–8. Pittsburgh, PA, USA, Aug. 5–9 1995.Google Scholar
  66. 66.
    Ude, A. Rekonstruktion von Trajektorien aus Stereobildfolgen für die Programmierung von Roboterbahnen. Ph.D. thesis, IPR, 1995.Google Scholar
  67. 67.
    Vapnik, V. Statistical Learning Theory. John Wiley & Sons, Inc., 1998.Google Scholar
  68. 68.
    Vicon. Vicon Web Page, 2000. Http://www.vicon.com/products/viconmx.html.Google Scholar
  69. 69.
    Voyles, R. and Khosla, P. Gesture-Based Programming: A Preliminary Demonstration. In Proceedings of the IEEE International Conference on Robotics and Automation, Detroit, Michigan, pages 708–713. Mai 1999.Google Scholar
  70. 70.
    Zhang, J., von Collani, Y., and Knoll, A. Interactive Assembly by a Two-Arm-Robot Agent. Robotics and Autonomous Systems, 1(29):91–100, 1999.CrossRefGoogle Scholar
  71. 71.
    Zöllner, R., Rogalla, O., Zöllner, J., and Dillmann, R. Dynamic Grasp Recognition within the Framework of Programming by Demonstration. In The 10th IEEE International Workshop on Robot and Human Interactive Communication (Roman), pages 418–423. 18.–21. September 2001.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Rüdiger Dillmann
    • 1
  • Raoul D. Zöllner
    • 1
  1. 1.Institut für Technische Informatik (ITEC)Karlsruhe UniversityGermany

Personalised recommendations