Person Recognition and Tracking

  • Michael Hähnel
  • Holger Fillbrandt
Part of the Signals and Communication Technology book series (SCT)


Feature Vector Face Recognition Recognition Rate Face Image Face Database 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ahonen, T., Hadid, A., and Pietikäinen, M. Face Recognition with Local Binary Patterns. In Proceedings of the 8th European Conference on Computer Vision, pages 469–481. Springer, Prague, Czech Republic, May 11–14 2004.Google Scholar
  2. 2.
    Alvarado, P., Dörfler, P., and Wickel, J. AXON 2-A Visual Object Recognition System for Non-Rigid Objects. In Hamza, M. H., editor, IASTED International Conference-Signal Processing, Pattern Recognition and Applications (SPPRA), pages 235–240. Rhodes, Greece, July 3–6 2001.Google Scholar
  3. 3.
    Batista, J. Tracking Pedestrians Under Occlusion Using Multiple Cameras. In Int. Conference on Image Analysis and Recognition, volume Lecture Notes in Computer Science 3212, pages 552–562. 2004.Google Scholar
  4. 4.
    Belhumeur, P., Hespanha, J., and Kriegman, D. Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection. In IEEE Transactions on Pattern Analysis and Machine Intelligence, pages 711–720. 1997.Google Scholar
  5. 5.
    Bileschi, S. and Heisele, B. Advances in Component-based Face Detection. In 2003 IEEE International Workshop on Analysis and Modeling of Faces and Gestures, AMFG 2003, pages 149–156. IEEE, October 2003.Google Scholar
  6. 6.
    Bishop, C. Neural Networks for Pattern Recognition. Oxford University Press, 1995.Google Scholar
  7. 7.
    Bradski, G. Computer Vision Face Tracking for Use in a Perceptual User Interface. Intel Technology Journal, Q2, 1998.Google Scholar
  8. 8.
    Brunelli, R. and Poggio, T. Face Recognition: Features versus Templates. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15(10):1042–1052, 1993.CrossRefGoogle Scholar
  9. 9.
    Cheng, Y. Mean Shift, Mode Seeking and Clustering. IEEE PAMI, 17:790–799, 1995.Google Scholar
  10. 10.
    Chung, K., Kee, S., and Kim, S. Face Recognition Using Principal Component Analysis of Gabor Filter Responses. In International Workshop on Recognition, Analysis, and Tracking of Faces and Gestures in Real-Time Systems. 1999.Google Scholar
  11. 11.
    Comaniciu, D. and Meer, P. Mean Shift: A Robust Approach toward Feature Space Analysis. IEEE PAMI, 24(5):603–619, 2002.Google Scholar
  12. 12.
    Cootes, T. and Taylor, C. Statistical Models of Appearance for Computer Vision. Technical report, University of Manchester, September 1999.Google Scholar
  13. 13.
    Cootes, T. and Taylor, C. Statistical Models of Appearance for Computer Vision. Technical report, Imaging Science and Biomedical Engineering, University of Manchester, March 2004.Google Scholar
  14. 14.
    Craw, I., Costen, N., Kato, T., and Akamatsu, S. How Should We Represent Faces for Automatic Recognition? IEEE Transactions on Pattern Recognition and Machine Intelligence, 21(8):725–736, 1999.CrossRefGoogle Scholar
  15. 15.
    Dempster, A., Laird, N., and Rubin, D. Maximum Likelihood from Incomplete Data Using the EM Algorithm. Journal of the Royal Statistical Society, Series B, 39(1):1–38, 1977.MathSciNetzbMATHGoogle Scholar
  16. 16.
    Duda, R. and Hart, P. Pattern Classification and Scene Analysis. John Wiley & Sons, 1973.Google Scholar
  17. 17.
    Elgammal, A. and Davis, L. Probabilistic Framework for Segmenting People Under Occlusion. In IEEE ICCV, volume 2, pages 145–152. 2001.Google Scholar
  18. 18.
    Fillbrandt, H. and Kraiss, K.-F. Tracking People on the Ground Plane of a Cluttered Scene with a Single Camera. WSEAS Transactions on Information Science and Applications, 9(2):1302–1311, 2005.Google Scholar
  19. 19.
    Gavrila, D. The Visual Analysis of Human Movement: A Survey. Computer Vision and Image Understanding, 73(1):82–98, 1999.zbMATHCrossRefGoogle Scholar
  20. 20.
    Georghiades, A., Belhumeur, P., and Kriegman, D. From Few to Many: Illumination Cone Models for Face Recognition under Variable Lighting and Pose. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(6):643–660, 2001.CrossRefGoogle Scholar
  21. 21.
    Gutta, S., Huang, J., Singh, D., Shah, I., Takács, B., and Wechsler, H. Benchmark Studies on Face Recognition. In Proceedings of the International Workshop on Automatic Face-and Gesture-Recognition (IWAFGR). Zürich, Switzerland, 1995.Google Scholar
  22. 22.
    Hähnel, M., Klünder, D., and Kraiss, K.-F. Color and Texture Features for Person Recognition. In International Joint Conference onf Neural Networks (IJCNN 2004). Budapest, Hungary, July 2004.Google Scholar
  23. 23.
    Haritaoglu, I., Harwood, D., and Davis, L. Hydra: Multiple People Detection and Tracking Using Silhouettes. In Proc. IEEE Workshop on Visual Surveillance, pages 6–13. 1999.Google Scholar
  24. 24.
    Haritaoglu, I., Harwood, D., and Davis, L. W4: Real-Time Surveillance of People and Their Activities. IEEE PAMI, 22(8):809–830, 2000.Google Scholar
  25. 25.
    Harville, M. and Li, D. Fast, Integrated Person Tracking and Activity Recognition with Plan-View Templates from a Single Stereo Camera. In IEEE CVPR, volume 2, pages 398–405. 2004.Google Scholar
  26. 26.
    Heisele, B., Ho, P., and Poggio, T. Face Recognition with Support Vector Machines: Global versus Component-based Approach. In ICCV01, volume 2, pages 688–694. 2001.Google Scholar
  27. 27.
    Kanade, T. Computer Recognition of Human Faces. Birkhauser, Basel, Switzerland, 1973.Google Scholar
  28. 28.
    Lades, M., Vorbrüggen, J., Buhmann, J., Lange, J., von der Malsburg, C., Würtz, R. P., and Konen, W. Distortion Invariant Object Recognition in the Dynamic Link Architecture. IEEE Transactions on Computers, 42(3):300–311, 1993.CrossRefGoogle Scholar
  29. 29.
    Manjunath, B., Salembier, P., and Sikora, T. Introduction to MPEG-7. John Wiley and Sons, Ltd., 2002.Google Scholar
  30. 30.
    Martinez, A. Recognizing Imprecisely Localized, Partially Occluded, and Expression Variant Faces from a Single Sample per Class. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(6):748–763, June 2002.CrossRefGoogle Scholar
  31. 31.
    Martinez, A. and Benavente, R. The AR face database. Technical Report 24, CVC, 1998.Google Scholar
  32. 32.
    McKenna, S., Jabri, S., Duric, Z., Wechsler, H., and Rosenfeld, A. Tracking Groups of People. CVIU, 80(1):42–56, 2000.zbMATHGoogle Scholar
  33. 33.
    Melnik, O., Vardi, Y., and Zhang, C.-H. Mixed Group Ranks: Preference and Confidence in Classifier Combination. PAMI, 26(8):973–981, August 2004.Google Scholar
  34. 34.
    Mittal, A. and Davis, L. M2-Tracker: A Multi-View Approach to Segmenting and Tracking People in a Cluttered Scene. Int. Journal on Computer Vision, 51(3):189–203, 2003.CrossRefGoogle Scholar
  35. 35.
    Moeslund, T. Summaries of 107 Computer Vision-Based Human Motion Capture Papers. Technical Report LIA 99-01, University of Aalborg, March 1999.Google Scholar
  36. 36.
    Moeslund, T. and Granum, E. A Survey of Computer Vision-Based Human Motion Capture. Computer Vision and Image Understanding, 81(3):231–268, 2001.CrossRefzbMATHGoogle Scholar
  37. 37.
    Nakajima, C., Pontil, M., Heisele, B., and Poggio, T. Full-body Person Recognition System. Pattern Recognition, 36:1997–2006, 2003.CrossRefzbMATHGoogle Scholar
  38. 38.
    Ohm, J. R., Cieplinski, L., Kim, H. J., Krishnamachari, S., Manjunath, B. S., Messing, D. S., and Yamada, A. Color Descriptors. In Manjunath, B., Salembier, P., and Sikora, T., editors, Introduction to MPEG-7, chapter 13, pages 187–212. Wiley & Sons, Inc., 2002.Google Scholar
  39. 39.
    Penev, P. and Atick, J. Local Feature Analysis: A General Statistical Theory for Object Representation. Network: Computation in Neural Systems, 7(3):477–500, 1996.CrossRefzbMATHGoogle Scholar
  40. 40.
    Pentland, A., Moghaddam, B., and Starner, T. View-based and Modular Eigenspaces for Face Recognition. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR’94). Seattle, WA, June 1994.Google Scholar
  41. 41.
    Phillips, P., Moon, H., Rizvi, S., and Rauss, P. The FERET Evaluation Methodology for Face-Recognition Algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(10):1090–1104, October 2000.CrossRefGoogle Scholar
  42. 42.
    Ro, Y., Kim, M., Kang, H., Manjunath, B., and Kim, J. MPEG-7 Homogeneous Texture Descriptor. ETRI Journal, 23(2):41–51, June 2001.Google Scholar
  43. 43.
    Schwaninger, A., Mast, F., and Hecht, H. Mental Rotation of Facial Components and Configurations. In Proceedings of the Psychonomic Society 41st Annual Meeting. New Orleans, USA, 2000.Google Scholar
  44. 44.
    Sirovich, L. and Kirby, M. Low-Dimensional Procedure for the Characterization of Human Faces. Journal of the Optical Society of America, 4(3):519–524, 1987.Google Scholar
  45. 45.
    Sung, K. K. and Poggio, T. Example-Based Learning for View-Based Human Face Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(1):39–51, 1997.CrossRefGoogle Scholar
  46. 46.
    Swain, M. and Ballard, D. Color Indexing. Int. Journal on Computer Vision, 7(1):11–32, 1991.CrossRefGoogle Scholar
  47. 47.
    Turk, M. A Random Walk through Eigenspace. IEICE Transactions on Information and Systems, E84-D(12):1586–1595, 2001.Google Scholar
  48. 48.
    Turk, M. and Pentland, A. Eigenfaces for Recognition. Journal of Cognitive Neuroscience, 3(1):71–86, 1991.CrossRefGoogle Scholar
  49. 49.
    Vapnik, V. Statistical Learning Theory. Wiley & Sons, Inc., 1998.Google Scholar
  50. 50.
    Viola, P. and Jones, M. Robust Real-time Object Detection. In ICCV01, 2, page 747. 2001.Google Scholar
  51. 51.
    Wallraven, C. and Bülthoff, H. View-based Recognition under Illumination Changes Using Local Features. In Proceedings of the International Conference on Computer Vision and pattern Recognition (CVPR). Kauai, Hawaii, December, 8–14 2001.Google Scholar
  52. 52.
    Waring, C. A. and Liu, X. Face Detection Using Spectral Histograms and SVMs. IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, 35(3):467–476, June 2005.CrossRefGoogle Scholar
  53. 53.
    Welch, G. and Bishop, G. An Introduction to the Kalman Filter. Technical Report TR 95-041, Department of Computer Science, University of North Carolina at Chapel Hill, 2004.Google Scholar
  54. 54.
    Wickel, J., Alvarado, P., Dörfler, P., Krüger, T., and Kraiss, K.-F. Axiom-A Modular Visual Object Retrieval System. In Jarke, M., Koehler, J., and Lakemeyer, G., editors, Proceedings of 25th German Conference on Artificial Intelligence (KI 2002), Lecture Notes in Artificial Intelligence, pages 253–267. Springer, Aachen, September 2002.Google Scholar
  55. 55.
    Wiskott, L., Fellous, J., Krüger, N., and von der Malsburg, C. Face Recognition by Elastic Bunch Graph Matching. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(7):775–779, 1997.CrossRefGoogle Scholar
  56. 56.
    Wren, C., Azerbayejani, A., Darell, T., and Pentland, A. Pfinder: Real-Time Tracking of the Human Body. IEEE PAMI, 19(7):780–785, 1997.Google Scholar
  57. 57.
    Yang, J., Zhu, X., Gross, R., Kominek, J., Pan, Y., and Waibel, A. Multimodal People ID for a Multimedia Meeting Browser. In Proceedings of the Seventh ACM International Conference on Multimedia, pages 159–168. ACM, Orlando, Florida, United States, 1999.Google Scholar
  58. 58.
    Yang, M., Kriegman, D., and Ahuja, N. Detecting Faces in Images: A Survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24:34–58, 2002.CrossRefGoogle Scholar
  59. 59.
    Zhao, T. and Nevatia, R. Tracking Multiple Humans in Complex Situations. IEEE PAMI, 26(9):1208–1221, 2004.Google Scholar
  60. 60.
    Zhao, W., Chellappa, R., Phillips, P. J., and Rosenfeld, A. Face recognition: A Literature Survey. ACM Computing Surveys, 35(4):399–458, 2003.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Michael Hähnel
    • 1
  • Holger Fillbrandt
    • 1
  1. 1.RWTH Aachen UniversityAachenGermany

Personalised recommendations