Skip to main content

Steady State Power System Voltage Stability Analysis and Control with FACTS

  • Chapter
Flexible AC Transmission Systems: Modelling and Control

Part of the book series: Power Systems ((POWSYS))

  • 1409 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mansour Y, editor (1993) Suggested Techniques for Voltage Stability Analysis. Publication No 93 TH0620-5WR, IEEE Power Engineering Society

    Google Scholar 

  2. Kundur P (1994) Power System Stability and Control. EPRI Power Engineering Series, McGraw-Hill

    Google Scholar 

  3. Taylor CW (1994) Power System Voltage Stability. EPRI Power Engineering Series, McGraw-Hill

    Google Scholar 

  4. Van Cutsem T, Vournas C (1998) Voltage Stability of Electric Power Systems. Kluwer Academic Publishers

    Google Scholar 

  5. Tinney WF, C.E. Hart (1967) Power flow solution by Newton’s method. IEEE Trans. on Power App. Syst., vol 86, no 11, pp1449–1456

    Google Scholar 

  6. Huneault M, Fahmideh-Vodani A, Juman M, Galiana FG (1985) The continuation method in power system optimization: applications to economy security functions. IEEE Transactions on PAS, vol 104, no 1, pp 114–124

    Google Scholar 

  7. Huneault M, Galiana FG (1990) An investigation of the solution to the optimal power flow problem incorporating continuation methods. IEEE Transactions on Power Systems, vol 5, no 1, pp 103–110

    Article  Google Scholar 

  8. Iba K, Suzuki H, Egawa M, Watanabe T (1990) Calculation of critical loading condition with nose curve using homotopy continuation method. IEEE Transactions on Power Systems, vol 5, no 1, pp 103–110

    Google Scholar 

  9. Ajjarapu V, Christy C (1992) The continuation power flow: a tool for steady state voltage stability analysis. IEEE Transactions on Power Systems, vol 7, no 1, pp 416–423

    Google Scholar 

  10. Canizares CA, Alvarado FL (1993) Point of collapse and continuation methods for large ac/dc systems. IEEE Transactions on Power Systems, vol 8, no 1, pp 1–8

    Article  Google Scholar 

  11. Chiang HD, Shah KS, Balu N (1995) CPFLOW: a practical tool for tracing power system steady-state stationary behavior due to load and generation variations. IEEE Transactions on Power Systems, vol 10, no 2, pp 623–634

    Google Scholar 

  12. Zhang XP, Handschin E, Yao M (2004) Multi-control functional static synchronous compensator (STATCOM) in power system steady state operations. Journal of Electric Power Systems Research, vol 72, no 3, pp 269–278

    Google Scholar 

  13. Sauer P W (1997) Technical challenges of computing available transfer capability (ATC) in electric power systems. 30th Hawaii International Conference on System Science, Maui, Hawaii

    Google Scholar 

  14. Transmission Transfer Capability Task Force (1996) Available transfer capability definitions and determination. North America Reliability Council, Princeton, New Jersey

    Google Scholar 

  15. Gisin BS, Obessis MV, Mitsche JV (2000) Practical methods for transfer limit analysis in the power industry deregulated environment. IEEE Trans. on Power Systems, vol 15, no 3, pp 955–961

    Google Scholar 

  16. Gravener MH, Nwankpa C (1999) Available transfer capability and first order sensitivity. IEEE Trans. on Power Systems, vol 14, no 2, pp 512–518

    Article  Google Scholar 

  17. Ejebe GC, Tong J, Waight J G, et al (1998) Available transfer capability calculations. IEEE Trans. on Power Systems, vol 13, no 4, pp 1521–1527

    Article  Google Scholar 

  18. Xia F, Meliopoulos APS (1996) A Methodology for probabilistic simultaneous transfer capability analysis. IEEE Trans. on Power Systems, vol 11, no 3, pp 1269–1278

    Google Scholar 

  19. Irisarri GD, Wang X, et al (1997) Maximum loadability for power systems using interior point nonlinear optimization method. IEEE Transactions on Power Systems, vol 12, no 1, pp 162–172

    Article  Google Scholar 

  20. Mello JCO, Melo ACG, Granville S (1997) Simultaneous transfer capability assessment by combining interior point methods and monte carlo simulation. IEEE Trans. on Power Systems, vol 12, no 2, pp 736–742

    Article  Google Scholar 

  21. Zhang XP, Handschin E (2002) Transfer capability computation of power systems with comprehensive modelling of facts controllers. 14th Power System Computation Conference (PSCC), Sevilla, Spain

    Google Scholar 

  22. Zhang XP (2005), (Paper for the Invited Session: Operation of Mega Grids), Transfer capability computation with security constraints. 15th Power System Computation Conference (PSCC), Liege, Belgium

    Google Scholar 

  23. Zhang XP, Handschin E (2001) Advanced implementation of UPFC in a nonlinear interior point OPF. IEE Proceedings-Generation, Transmission and Distribution, vol 148, no 5, pp 489–496

    Google Scholar 

  24. Zhang XP, Handschin E, Yao M (2001) Modeling of the generalized unified power flow controller in a nonlinear interior point OPF. IEEE Trans. on Power Systems, vol 16, no 3, pp 367–373

    Google Scholar 

  25. Zhang XP, Handschin E (2001) Optimal power flow control by converter based FACTS controllers. 7th International Conference on AC-DC Power Transmission, IEE, Savoy Place, London, UK

    Google Scholar 

  26. Granville S (1994) Optimal reactive power dispatch through interior point methods. IEEE Transactions on Power Systems, vol 9, no 1, pp 136–146

    Article  Google Scholar 

  27. Wu YC, Debs A, Marsten RE (1994) A direct nonlinear predictor-corrector primal-dual interior point algorithm for optimal power flows. IEEE Transactions on Power Systems, vol 9, no 2, pp 876–883

    Google Scholar 

  28. El-Bakry AS, Tapia RA, Tsuchiya T, Zhang Y (1996) On the formulation and theory of the newton interior-point method for nonlinear programming. Journal of Optimization Theory and Applications, vol 89, no 3, pp 507–541

    Article  MathSciNet  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2006). Steady State Power System Voltage Stability Analysis and Control with FACTS. In: Flexible AC Transmission Systems: Modelling and Control. Power Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-30607-2_6

Download citation

  • DOI: https://doi.org/10.1007/3-540-30607-2_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-30606-1

  • Online ISBN: 978-3-540-30607-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics