Skip to main content

Modeling of Multi-Converter FACTS in Power Flow Analysis

  • Chapter
Flexible AC Transmission Systems: Modelling and Control

Part of the book series: Power Systems ((POWSYS))

  • 1402 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Song YH, John AT (1999) Flexible AC Transmission Systems. IEE Press, London

    Google Scholar 

  2. Hingorani NG, Gyugyi L (2000) Understanding FACTS — concepts and technology of flexible ac transmission systems. New York: IEEE Press

    Google Scholar 

  3. Fardanesh B, Henderson M, Shperling B, Zelingher S, Gyugyi L, Schauder C, Lam B, Mounford J, Adapa R, Edris A (1998) Convertible static compensator: application to the New York transmission system. CIGRE 14-103, Paris, France

    Google Scholar 

  4. Fardanesh B, Shperling B, Uzunovic E, Zelingher S (2000) Multi-converter FACTS devices: the generalized unified power flow controller (GUPFC). Proceedings of IEEE 2000 PES Summer Meeting, Seattle, USA

    Google Scholar 

  5. Zhang XP, Handschin E, Yao MM (2001) Modeling of the generalized unified power flow controller in a nonlinear interior point OPF. IEEE Trans. on Power Systems, vol 16, no 3, pp. 367–373

    Google Scholar 

  6. Zhang XP (2003) Modelling of the interline power flow controller and generalized unified power flow controller in Newton power flow. IEE Proc.-Generation, Transmission and Distribution, vol 150, no 3, pp 268–274

    Google Scholar 

  7. Schauder C, Gernhardt M, Stacey E, Lemak T, Gyugyi L, Cease TW, Edris A (1995) Development of a ±100MVar static condenser for voltage control of transmission systems. IEEE Transactions on Power Delivery, vol 10, no 3, pp1486–1493

    Article  Google Scholar 

  8. Gyugyi L, Shauder CD, Sen KK (1997) Static synchronous series compensator: a solid-state approach to the series compensation of transmission lines. IEEE Transactions on Power Delivery; vol 12, no 1, pp 406–413

    Article  Google Scholar 

  9. Sen KK (1998) SSSC-Static synchronous series compensator: theory, modeling, and applications. IEEE Transactions on Power Delivery, vol. 13, no 1, pp 241–246

    Article  Google Scholar 

  10. Gyugyi L, Shauder CD, Williams SL, Rietman TR, Torgerson DR, Edris A (1995) The unified power flow controller: a new approach to power transmission control. IEEE Transactions on Power Delivery, vol 10, no 2, pp 1085–1093

    Article  Google Scholar 

  11. Sen KK, Stacey EJ (1998) UPFC — Unified power flow controller: theory, modeling and applications. IEEE Trans. on Power Delivery, vol 13, no 4, pp 1453–1460

    Article  Google Scholar 

  12. Zhang XP, Handschin E, (2001) Optimal power flow control by converter based FACTS controllers. 7th International Conference on AC-DC Power Transmission, 28–30 November 2001

    Google Scholar 

  13. Zhang XP, Handschin E, Yao M (2004) Multi-control functional static synchronous compensator (STATCOM) in power system steady state operations. Journal of Electric Power Systems Research, vol 72, no 3, pp 269–278

    Google Scholar 

  14. Zhang XP (2003) Advanced Modeling of the multi-control functional static synchronous series compensator (SSSC) in Newton power flow. IEEE Transactions on Power Systems, vol 18, no 4, pp 1410–1416

    Google Scholar 

  15. Nabavi-Niaki A, and Iravani MR (1996) Steady state and dynamic models of unified power flow controller (UPFC) for power system studies. IEEE Trans. on Power Systems, vol 11, no 4, pp 1937–1943

    Article  Google Scholar 

  16. Raman M, Ahmed M, Gutman R, O’Keefe, RJ, Nelson RJ, Bian J (1997) UPFC application on the AEP system: planning considerations. IEEE Transactions on Power Systems, vol 12, no 4, pp 1695–1701

    Google Scholar 

  17. Noroozian M, Angquist L, Ghandhari M, Andersson G (1997) Use of UPFC for optimal power flow control. IEEE Transactions on Power Delivery, vol 12, no 4, pp 1629–1634

    Google Scholar 

  18. Fuerte CR, Acha E, H. Ambriz-Perez H (200) A comprhensive Newton-Raphson UPFC model for the quadratic power flow solution of practical power networks. IEEE Transactions on Power Systems, vol 15, no 1, pp 102–109

    Google Scholar 

  19. Handschin E, Lehmkoester C (1999) Optimal power flow for deregulated systems with FACTS-Devices. 13th PSCC, Trondheim, Norway, pp 1270–1276

    Google Scholar 

  20. Acha E, H. Ambriz-Perez H (1999) FACTS devices modelling in optimal power flow using Newton’s method. 13th PSCC, Trondheim, Norway, pp 1277–1284

    Google Scholar 

  21. Zhang XP, Handschin E (2001) Advanced implementation of UPFC in a nonlinear interior point OPF. IEE Proceedings— Generation, Transmission & Distribution, vol 148, no 3, pp 489–496

    Google Scholar 

  22. Lehmkoster C (2002) Security constrained optimal power flow for an economical operation of FACTS-devices in liberalized energy markets. IEEE Transactions on Power Delivery, vol 17 no 2, pp 603–608

    Article  Google Scholar 

  23. Schauder CD, Gyugyi L, Lund MR, Hamai DM, Rietman TR, Torgerson DR, Edris A (1998) Operation of the unified power flow controller (UPFC) under practical constraints. IEEE Trans. on Power Delivery, vol 13:630–637

    Google Scholar 

  24. Zhang XP (2005) Comprehensive modelling of the unified power flow controller for power system control. Electrical Engineering-Archiv für Elektrotechnik, DOI: 10.1007/S00202-004-0280-0, published online

    Google Scholar 

  25. Asplund G, Eriksson K, Svensson K (1997) DC transmission based on voltage source converters. CIGRE SC14 Colloquium, South Africa

    Google Scholar 

  26. Asplund G (2000) Application of HVDC light to power system enhancement. Proceedings of IEEE 2000 PES Winter Meeting, Singapore

    Google Scholar 

  27. Schetter F, Hung H, Christl N (2000) HVDC transmission system using voltage sourced converters — design and applications. Proceedings of IEEE 2000 PES Summer Meeting, Seattle, USA

    Google Scholar 

  28. Lasson T, Edris A, Kidd D, Aboytes F (2001) Eagle pass back-to-back tie: a dual purpose application of voltage source converter technology. Proceedings of IEEE 2001 PES Summer Meeting, Vancouver, Canada

    Google Scholar 

  29. Jiang H, Ekstrom A (1998) Multiterminal HVDC systems in urban areas of large cities. IEEE Transactions on Power Delivery, vol 13, no 4, pp 1278–1284

    Google Scholar 

  30. Lu W, Ooi BT (2003) DC overvoltage control during loss of converter in multiterminal voltage-source converter-based HVDC (M-VSC-HVDC). IEEE Trans. on Power Delivery, vol 18, no 3, pp 915–920

    Google Scholar 

  31. Zhang XP (2004) Multiterminal voltage-sourced converter based HVDC models for power flow analysis. IEEE Transactions on Power Systems, vol 18, no 4, 2004, pp1877–1884

    Google Scholar 

  32. Hochgraf C, Lasseter RH (1997) A transformer-less static synchronous compensator employing a multi-level inverter. IEEE Trans. on Power Delivery, vol 12, no 2, pp 881–887

    Article  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2006). Modeling of Multi-Converter FACTS in Power Flow Analysis. In: Flexible AC Transmission Systems: Modelling and Control. Power Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-30607-2_3

Download citation

  • DOI: https://doi.org/10.1007/3-540-30607-2_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-30606-1

  • Online ISBN: 978-3-540-30607-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics