Skip to main content

Involvement of Reactive Oxygen and Nitrogen Species in the Pathogenesis of Acute Lung Injury

  • Conference paper

Part of the book series: Update in Intensive Care and Emergency Medicine ((UICMSOFT,volume 44))

Conclusion

Reactive oxygen and nitrogen intermediates, produced by the interaction of NO with partially reduced oxygen species, affect lung function and homeostasis in a variety of different ways. They act as signaling agents and play an essential role in pathogen killing. On the other hand, they may contribute to tissue injury by upregulating genes responsible for the production of inflammatory mediators and by directly nitrating and oxidizing proteins, events known to adversely affect critical functions. A significant challenge to defining their role in lung injury results from their short biological half-lives, and lack of sensitive detection techniques, and the difficulty in deciphering the relevance of the various substrate concentrations to a particular measured response. Thus, many questions relating to the chemical, physiological, pathobiological, and clinical consequences of ROS and RNS generation remain unanswered. Therapeutic strategies, such as enhanced anti-inflammatory and antioxidant therapies are in their infancy in the clinical arena. Hence, this discussion of what is known leads one to realize how much is not known with regard to the role of RNS/ROS in lung injury.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gow AJ, Farkouh CR, Munson DA, Posencheg MA, Ischiropoulos H (2004) Biological significance of nitric oxide-mediated protein modifications. Am J Physiol Lung Cell Mol Physiol 287:L262–L268

    Article  PubMed  CAS  Google Scholar 

  2. Hardiman KM, McNicholas-Bevensee CM, Fortenberry J, et al (2004) Regulation of amiloridesensitive Na(+) transport by basal nitric oxide. Am J Respir Cell Mol Biol 30:720–728

    Article  PubMed  CAS  Google Scholar 

  3. Bruckdorfer R (2005) The basics about nitric oxide. Mol Aspects Med 26:3–31

    Article  PubMed  CAS  Google Scholar 

  4. Kim SO, Merchant K, Nudelman R, et al (2002) OxyR: a molecular code for redox-related signaling. Cell 109:383–396

    Article  PubMed  CAS  Google Scholar 

  5. Georgiou G (2002) How to flip the (redox) switch. Cell 111:607–610

    Article  PubMed  CAS  Google Scholar 

  6. Broillet MC (2000) A single intracellular cysteine residue is responsible for the activation of the olfactory cyclic nucleotide-gated channel by NO. J Biol Chem 275:15135–15141

    Article  PubMed  CAS  Google Scholar 

  7. Gaston B, Drazen JM, Loscalzo J, Stamler JS (1994) The biology of nitrogen oxides in the airways. Am J Respir Crit Care Med 149:538–551

    PubMed  CAS  Google Scholar 

  8. Gaston B, Reilly J, Drazen JM, et al (1993) Endogenous nitrogen oxides and bronchodilator S-nitrosothiols in human airways. Proc Natl Acad Sci USA 90:10957–10961

    Article  PubMed  CAS  Google Scholar 

  9. Jia L, Bonaventura J, Stamler JS (1996) S-nitrosohaemoglobin: a dynamic activity of blood involved in vascular control. Nature 380:221–226

    Article  PubMed  CAS  Google Scholar 

  10. Lipton SA, Choi YB, Sucher NJ, Pan ZH, Stamler JS (1996) Redox state, NMDA receptors and NO-related species. Trends Pharmacol Sci 17:186–187

    Article  PubMed  CAS  Google Scholar 

  11. Molina yVL, McDonald B, Reep B, et al (1992) Nitric oxide-induced S-nitrosylation of glyceraldehyde-3-phosphate dehydrogenase inhibits enzymatic activity and increases endogenous ADP-ribosylation. J Biol Chem 267:24929–24932.

    Google Scholar 

  12. Kubes P, Suzuki M, Granger DN (1991) Nitric oxide: an endogenous modulator of leukocyte adhesion. Proc Natl Acad Sci USA 88:4651–4655

    Article  PubMed  CAS  Google Scholar 

  13. Janssen-Heininger YM, Persinger RL, Korn SH, et al (2002) Reactive nitrogen species and cell signaling: implications for death or survival of lung epithelium. Am J Respir Crit Care Med 166:S9–S16

    Article  PubMed  Google Scholar 

  14. Vepa S, Scribner WM, Parinandi NL, English D, Garcia JG, Natarajan V (1999) Hydrogen peroxide stimulates tyrosine phosphorylation of focal adhesion kinase in vascular endothelial cells. Am J Physiol 277:L150–L158

    PubMed  CAS  Google Scholar 

  15. Johnson A, Phillips P, Hocking D, Tsan MF, Ferro T (1989) Protein kinase inhibitor prevents pulmonary edema in response to H2O2. Am J Physiol 256:H1012–H1022

    PubMed  CAS  Google Scholar 

  16. Zhu S, Ware LB, Geiser T, Matthay MA, Matalon S (2001) Increased levels of nitrate and surfactant protein a nitration in the pulmonary edema fluid of patients with acute lung injury. Am J Respir Crit Care Med 163:166–172

    PubMed  CAS  Google Scholar 

  17. Gole MD, Souza JM, Choi I, et al (2000) Plasma proteins modified by tyrosine nitration in acute respiratory distress syndrome. Am J Physiol Lung Cell Mol Physiol 278:L961–L967

    PubMed  CAS  Google Scholar 

  18. Sznajder JI, Fraiman A, Hall JB, et al (1989) Increased hydrogen peroxide in the expired breath of patients with acute hypoxemic respiratory failure. Chest 96:606–612

    PubMed  CAS  Google Scholar 

  19. Quinlan GJ, Lamb NJ, Tilley R, Evans TW, Gutteridge JM (1997) Plasma hypoxanthine levels in ARDS: implications for oxidative stress, morbidity, and mortality. Am J Respir Crit Care Med 155:479–484

    PubMed  CAS  Google Scholar 

  20. Sittipunt C, Steinberg KP, Ruzinski JT, et al (2001) Nitric oxide and nitrotyrosine in the lungs of patients with acute respiratory distress syndrome. Am J Respir Crit Care Med 163:503–510

    PubMed  CAS  Google Scholar 

  21. Zhu S, Basiouny KF, Crow JP, Matalon S (2000) Carbon dioxide enhances nitration of surfactant protein A by activated alveolar macrophages. Am J Physiol Lung Cell Mol Physiol 278:L1025–L1031

    PubMed  CAS  Google Scholar 

  22. Mulligan MS, Hevel JM, Marletta MA, Ward PA (1991) Tissue injury caused by deposition of immune complexes is L-arginine dependent. Proc Natl Acad Sci USA 88:6338–6342

    Article  PubMed  CAS  Google Scholar 

  23. Heiss LN, Lancaster JR Jr, Corbett JA, Goldman WE (1994) Epithelial autotoxicity of nitric oxide: role in the respiratory cytopathology of pertussis. Proc Natl Acad Sci USA 91:267–270

    Article  PubMed  CAS  Google Scholar 

  24. Lundin S, Mang H, Smithies M, Stenqvist O, Frostell C (1999) Inhalation of nitric oxide in acute lung injury: results of a European multicentre study. The European Study Group of Inhaled Nitric Oxide. Intensive Care Med 25:911–919

    Article  PubMed  CAS  Google Scholar 

  25. Berlett BS, Levine RL, Stadtman ER (1998) Carbon dioxide stimulates peroxynitrite-mediated nitration of tyrosine residues and inhibits oxidation of methionine residues of glutamine synthetase: both modifications mimic effects of adenylylation. Proc Natl Acad Sci U S A 95:2784–2789

    Article  PubMed  CAS  Google Scholar 

  26. Gow A, Duran D, Thom SR, Ischiropoulos H (1996) Carbon dioxide enhancement of peroxynitrite-mediated protein tyrosine nitration. Arch Biochem Biophys 333:42–48

    Article  PubMed  CAS  Google Scholar 

  27. Lang JD Jr, Chumley P, Eiserich JP, et al (2000) Hypercapnia induces injury to alveolar epithelial cells via a nitric oxide-dependent pathway. Am J Physiol Lung Cell Mol Physiol 279:L994–1002

    PubMed  CAS  Google Scholar 

  28. Lang JD, Figueroa M, Sanders KD, et al (2005) Hypercapnia via reduced rate and tidal volume contributes to lipopolysaccharide-induced lung injury. Am J Respir Crit Care Med 171:147–157

    Article  PubMed  Google Scholar 

  29. Haddad IY, Holm BA, Hlavaty L, Matalon S (1994) Dependence of surfactant function on extracellular pH: mechanisms and modifications. J Appl Physiol 76:657–662

    PubMed  CAS  Google Scholar 

  30. Cross CE, Forte T, Stocker R, et al. (1990) Oxidative stress and abnormal cholesterol metabolism in patients with adult respiratory distress syndrome. J Lab Clin Med 115:396–404

    PubMed  CAS  Google Scholar 

  31. Pacht ER, Timerman AP, Lykens MG, Merola AJ (1991) Deficiency of alveolar fluid glutathione in patients with sepsis and the adult respiratory distress syndrome. Chest 100:1397–1403

    PubMed  CAS  Google Scholar 

  32. Leff JA, Parsons PE, Day CE, et al (1992) Increased serum catalase activity in septic patients with the adult respiratory distress syndrome. Am Rev Respir Dis 146:985–989

    PubMed  CAS  Google Scholar 

  33. Leff JA, Parsons PE, Day CE, et al (1993) Serum antioxidants as predictors of adult respiratory distress syndrome in patients with sepsis. Lancet 341:777–780

    Article  PubMed  CAS  Google Scholar 

  34. Metnitz PG, Bartens C, Fischer M, Fridrich P, Steltzer H, Drum lW (1999) Antioxidant status in patients with acute respiratory distress syndrome. Intensive Care Med 25:180–185

    Article  PubMed  CAS  Google Scholar 

  35. Gadek JE, DeMichele SJ, Karlstad MD, et al (1999) Effect of enteral feeding with eicosapentaenoic acid, gamma-linolenic acid, and antioxidants in patients with acute respiratory distress syndrome. Enteral Nutrition in ARDS Study Group. Crit Care Med 27:1409–1420

    Article  PubMed  CAS  Google Scholar 

  36. Quinlan GJ, Mumby S, Martin GS, Bernard GR, Gutteridge JM, Evans TW (2004) Albumin influences total plasma antioxidant capacity favorably in patients with acute lung injury. Crit Care Med 32:755–759l

    Article  PubMed  CAS  Google Scholar 

  37. Lang JD Jr, Davis JR, Patel I, Matalon S (2006) Oxidative and nitrosative lung injury. In: Fishma AP, Fishman JA, Grippi MA, Kaiser LB, Senior RM (eds) Fishman’s Pulmonary Diseases and Disorders, 4th ed. McGraw-Hill, Columbus (in press)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Matalon, S., Davis, I.C., Lang, J.D. (2007). Involvement of Reactive Oxygen and Nitrogen Species in the Pathogenesis of Acute Lung Injury. In: Abraham, E., Singer, M. (eds) Mechanisms of Sepsis-Induced Organ Dysfunction and Recovery. Update in Intensive Care and Emergency Medicine, vol 44. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-30328-6_7

Download citation

  • DOI: https://doi.org/10.1007/3-540-30328-6_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-30157-8

  • Online ISBN: 978-3-540-30328-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics