Skip to main content

Part of the book series: Update in Intensive Care and Emergency Medicine ((UICMSOFT,volume 44))

Conclusion

Skeletal muscle is a significant player in MOF, showing marked metabolic and structural changes and contributing to the metabolic and inflammatory fluxes in the body. Muscle function is severely compromised, but muscle is a resilient organ and shows an excellent ability to recovery. As a highly plastic organ, muscle shows marked adaptation to activity levels and immobility, and in situations of whole body stress provides a major store of amino acids through controlled degradation. However, muscle provision of certain, conditionally essential amino acids can become limiting. The opportunity for specific nutritional interventions is encouraging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Leijten FS, Harinck-de Weerd JE, Poortvliet DC, de Weerd AW (1995) Therole of polyneuropathy in motor convalescence after prolonged mechanical ventilation. JAMA 274:1221–1225

    Article  PubMed  CAS  Google Scholar 

  2. Wagenmakers AJM (1999) Fuel utilization by skeletal muscle during rest and exercise. In: Stipanuk MH (ed) Biochemical and Physiological Aspects of Human Nutrition. Saunders, Philadelphia, pp 882–900

    Google Scholar 

  3. Lipman RL, Raskin P, Love T, Triebwasser J, Lecocq FR, Schnure JJ (1972) Glucose intolerance during decreased physical activity in man. Diabetes 21:101–107

    PubMed  CAS  Google Scholar 

  4. Saltin B, Blomqvist G, Mitchell JH, Johnson RL, Wildenthal K, Chapman C (1968) Response to exercise after bedrest and training. A longitudinal study of adaptive changes in oxygen transport and body composition. Circulation 38:VII 1–78

    Google Scholar 

  5. Stein TP, Wade CE (2005) Metabolic consequences of Muscle disuse atrophy. J Nutr 135:1824S–1828S

    PubMed  CAS  Google Scholar 

  6. Van den Berghe G, Wouters P, Weekers F, et al (2001) Intensive insulin therapy in the critically patient. N Engl J Med 345:1359–1367

    Article  PubMed  Google Scholar 

  7. Herndon DN, Tompkins RG (2004) Support of the metabolic response to burn injury. Lancet 363:1895–1902

    Article  PubMed  CAS  Google Scholar 

  8. Levy B, Gibot S, Franck P, Cravoisy A, Bollaert PE (2005) Relation between muscle Na+ K+ ATPase activity and raised lactate concentrations in septic shock: a prospective study. Lancet 365:871–875

    Article  PubMed  CAS  Google Scholar 

  9. Gamrin L, Andersson K, Hultman E, Nilsson E, Essen P, Wernerman J (1997) Longitudinal changes of biochemical parameters in muscle during critical illness. Metabolism 46:756–762

    Article  PubMed  CAS  Google Scholar 

  10. Helliwell TR, Wilkinson A, Griffiths RD, McClelland P, Palmer TEA, Bone JM (1998) Muscle fibre atrophy in critically ill patients is associated with the loss of myosin filaments and the presence of lysosomal enzymes and ubiquitin. Neuropathol Appl Neurobiol 24:507–517

    Article  PubMed  CAS  Google Scholar 

  11. Ruderman NB, Sha AK, Vavvas D, Witters LA (1999) Malonyl-CoA, fuel sensing, and insulin resistance. Am J Physiol 276:E1–E18

    PubMed  CAS  Google Scholar 

  12. Sponk P, Zandstra D, Ince C (2004) Bench-to-bedside review: sepsis is a disease of the microcirculation. Crit Care 8:562–468

    Google Scholar 

  13. Ince C, Sinaasappel M (1999) Micocirculatory oxygenation and shunting in sepsis and shock. Crit Care Med 27:1369–1377

    Article  PubMed  CAS  Google Scholar 

  14. Fink MP (2002) Cytopathic hypoxia: Is oxygen use impaired in sepsis as a result of an acquired intrinsic derangement in cellular respiration? Crit Care Clin 18:165–175

    Article  PubMed  CAS  Google Scholar 

  15. Callahan LA, Supinski GS (2005) Sepsis induces diaphragm electron transport chain dysfunction and protein depletion. Am J Respir Crit Care Med 172: 861–868

    Article  PubMed  Google Scholar 

  16. Singer M, DeSantis V, Vitale D, Jeffcoate W (2004) Multiorgan failure is an adaptive, endocrine-mediated, metabolic response to overwhelming ssytemic inflammation. Lancet 364:545–547

    Article  PubMed  Google Scholar 

  17. De Blasi RA, Palmisani S, Alampi D, et al (2005) Microvascular dysfuntion and skeletal muscle oxygenation assessed by phase-modulation near-infrared spectrospy in patients with septic shock. Intensive Care Med 31:1661–1668

    Article  PubMed  Google Scholar 

  18. Pareznik R, Knezevic R, Voga G, Podbregar M (2006) Changes in muscle tissue oxygenation during stagnant ischemia in septic patients. Intensive Care Med 32:87–92

    Article  PubMed  Google Scholar 

  19. Brearley D, Brand M, Hargreaves I, et al (2002) Association between mitochondrial dysfunction and severity of outcome of septic shock. Lancet 360:219–223

    Article  Google Scholar 

  20. Vanhorebeek I, De Vos R, Mesotten D, Wouters PJ, De Wolf-Peeters C, Van den Berghe G (2005) Protection of hepatocyte mitochondrial ultrastructure and function by strict blood glucose control with insulin in critically ill patients. Lancet 365:53–59

    Article  PubMed  CAS  Google Scholar 

  21. Lanone S, Taille C, Boczkowski J, Aubier M (2005) Diaphragmatic fatigue during sepsis and septic shock. Intensive Care Med 31:1611–1617

    Article  PubMed  Google Scholar 

  22. Rooyackers OE, Hesselink MKC, Wagenmakers AJM (1997) Energy metabolism and contractility of electrically stimulated muscle of rats recovering from critical illness. Clin Sci 92:189–195

    PubMed  CAS  Google Scholar 

  23. Cunningham JN, Carter NW, Rector FC, Seldin DW (1971) Resting transmembrane potential difference of skeletalmuscle in normal subjects and severely ill patients. JClin Invest 50:49–50

    Article  CAS  Google Scholar 

  24. Gamrin L, Andersson K, Hultman E, Essen P, Wernerman J (1997) Longitudinal changes of biochemical parameters in muscle during critical illness. Metabolism 46:756–762

    Article  PubMed  CAS  Google Scholar 

  25. Helliwell TR, Griffiths RD, Coakley JH, et al (1990) Muscle pathology and biochemistry in critically ill patients. J Neurol Sci 98S:329

    Google Scholar 

  26. Rooyackers OE, Kersten AH, Wagenmakers AJM (1996) Mitochondrial protein content and in vivo synthesis rates in skeletal muscle from critically ill rats. Clin Sci 91:475–481

    PubMed  CAS  Google Scholar 

  27. Bolton CF, Gilbert JJ, Hahn AF, Sibbald WJ (1984) Polyneuropathy in critically ill patients. J Neurol Neurosurg Psychiatry 47:1223–1231

    PubMed  CAS  Google Scholar 

  28. Helliwell TR, Coakley JH, Wagenmakers AJM, et al (1991) Necrotizingmyopathy in criticallyill patients. J. Pathology 164:307–314

    Article  CAS  Google Scholar 

  29. Coakley JH, Nagendran K, Yarwood GD, Honavar M, Hinds CJ (1998) Patterns of neurophysiological abnormality in prolonged critical illness. Intensive Care Med 24:801–807

    Article  PubMed  CAS  Google Scholar 

  30. Latronico N, Peli E, Botteri M (2005) Critical illness myopathy and neuropathy. Curr Opin Crit Care 11:126–132

    Article  PubMed  Google Scholar 

  31. 1 Andrews FJ, Griffiths RD (2003) Intensive care myopathy and neuropathy. Anaesth Intensive Care Med 4:123–125

    Google Scholar 

  32. Bolton CF (2005) Neuromuscular manifestations of critical illness. Muscle Nerve 32:140–163

    Article  PubMed  Google Scholar 

  33. Fenzi F, Latronico N, Refatti N, Rizzuto M (2003) Enhanced expression of E-selectin on the vascular endothelium of peripheral nerve in critically ill patients with neuromuscular disorders. Acta Neuropathol (Berl) 27:686–693

    Google Scholar 

  34. Helliwell TR, Wilkinson A, Griffiths RD, Palmer TEA, McClelland P, Bone JM (1998) Microvasculatur endothelial activation in the skeletal muscles of patients with multiple organ failure. J Neurol Sci 154:26–34

    Article  PubMed  CAS  Google Scholar 

  35. Langouche L, Vanhorebeek I, Vlasselaers D, et al (2005) Intensive insulin therapy protects the endothelium of critically ill patients. J Clin Invest 115:2277–2286

    Article  PubMed  CAS  Google Scholar 

  36. Leijten FS, Harinck-de Weerd JE, Poortvliet DC, et al (1995) The role of polyneuropathy in motor convalescence after prolonged mechanical ventilation. JAMA 274:1221–1225

    Article  PubMed  CAS  Google Scholar 

  37. Fletcher SN, Kennedy DD, Ghosh IR, et al (2003) Persistent neuromuscular and neurophysiologic abnormalities in lon-term survivors of prolonged critical illness. Crit Care Med 31:1012–1016

    Article  PubMed  Google Scholar 

  38. Finn PJ, Plank LD, Clark MA, Connolly AB, Hill GL (1996) Progressive cellular dehydration and proteolysis in critically ill patients. Lancet 347:654–656

    Article  PubMed  CAS  Google Scholar 

  39. Klaude M, Hammarqvist F, Wernerman J (2005) An assay of microsomal membrane-associated proteosomes demonstrates increased proteolytic activity in skeletal muscle of intensive care unit patients. Clin Nutr 24:259–265

    Article  PubMed  CAS  Google Scholar 

  40. Hasselgren P-O, Menconi MJ, Fareed MU, Yang H, Wei W, Evenson A (2005) Novel aspects on the regulation of muscle wasting in sepsis. Int J Biochem Cell Biol 37:2156–2168

    Article  PubMed  CAS  Google Scholar 

  41. Fisher DR, Sun X, Williams AB, et al (2001) Dantrolene reduces serum TNFalpha and corticosterone levels and muscle calcium, calpain gene expression, and protein breakdown in septic rats. Shock 15:200–207

    Article  Google Scholar 

  42. Hasselgren PO (2002) Molecular regulation of muscle wasting. Sci Med 8:230–239

    CAS  Google Scholar 

  43. Griffiths RD, Palmer TEA, Helliwell T, Maclennan P, Macmillan RR (1995) Effect of passive stretching on the wasting of muscle in the critically ill. Nutrition 11:428–432

    PubMed  CAS  Google Scholar 

  44. Bessey PQ, Lowe KA (1993) Early hormonal changes affect the catabolic responses to trauma. Ann Surg 218:476–491

    PubMed  CAS  Google Scholar 

  45. Ferrando AA, Stuart CS, Sheffield-Moore M, Wolfe RR (1999) Inactivity amplifies the catabolic responses of skeletal muscle to cortisol. J Clin Endocrinol Metab 84:3515–3521

    Article  PubMed  CAS  Google Scholar 

  46. De Letter M, van Doorn P, Savelkoul H, et al (2000) Critical illness polyneuropathy and myopathy (CIPNM) evidence for local immune activation by cytokine-expression in the muscle tissue. J Neuroimmunol 106:206–213

    Article  PubMed  Google Scholar 

  47. Druchky A, Herkert M, Radespiel-Troger M, et al (2001) Critical illness polyneuropathy: clinical findings and cell culture assay of neurotoxicity assessed by a prospective study. Intensive Care Med 27:686–693

    Article  Google Scholar 

  48. Friedrich O, Hund E, Weber C, Kacke W, Fink RHA (2004) Critical illness myopathy serum fractions affect membrane excitability and intr-cellular calcium release in mammalian skeletal muscle. J Neurol 252:53–65

    Article  CAS  Google Scholar 

  49. Tidball JT (2005) Inflammatory processes in muscle injury and repair. Am J Physiol Regul Integr Comp Physiol 288:R345–R353

    PubMed  CAS  Google Scholar 

  50. Nguyen HX, Tidball JG (2003) Interactions between neutrophils and macrophages promote macrophage killing of muscle cells in vitro. J Physiol 547:125–132

    Article  PubMed  CAS  Google Scholar 

  51. Niu XF, Smith CW, Kubes P (1994) Intracellualar oxidative stress induced by nitric oxide synthesis inhibition increases endothelial cell adhesion to neutrophils. Cir Res 74:1133–1140

    CAS  Google Scholar 

  52. Tidball JG, Lavergne E, Lau KS, Spencer MJ, Stull JT, Wehling M (1998) Mechanical loading regulates nitric oxide synthase expression and activity in developing and adult skeletal muscle. Am J Physiol Cell Physiol 275:C260–C266

    CAS  Google Scholar 

  53. 1 Tidball JG, Wehling-Henricks M (2004) Expression of a NOS transgene in dystrophin-deficient muscle reduces muscle membrane damage without increasing the expression of membrane-associated cytoskeletal proteins. Mol Genet Metab 82:312–320

    Article  PubMed  CAS  Google Scholar 

  54. Adembri C, Kastamoniti E, Bertolozzi I, et al (2004) Pulmonary injury follows systemic inflammatory reaction in infrarenal aortic surgery. Crit Care Med 32:1170–1177

    Article  PubMed  Google Scholar 

  55. McArdle A, Pattwell D, Vasilaki A, Griffiths RD, Jackson MJ (2001) Contractile activity-induced oxidative stress: cellular origin and adaptive responses. Am J Physiol Cell Physiol 280:C621–627

    PubMed  CAS  Google Scholar 

  56. McArdle F, Spiers S, Aldemir H, et al (2004) Preconditioning of skeletal muscle against contraction-induced damage: the role of adaptations to oxidants in mice. J Physiol 561:233–244

    Article  PubMed  CAS  Google Scholar 

  57. Hightower LE (1991) Heat shock, stress proteins, chaperones, and proteotoxicity. Cell 66:191–197

    Article  PubMed  CAS  Google Scholar 

  58. Pockley AG (2003) Heat shock proteins as regulators of the immune response. Lancet 362:469–476

    Article  PubMed  CAS  Google Scholar 

  59. Chu EK, Ribeiro SP, Slutsky AS (1997) Heat stress increases survival rates in lipopolysaccharide-stimulated rats. Crit Care Med 25:1727–1732

    Article  PubMed  CAS  Google Scholar 

  60. Nissim I, States B, Hardy M, Pleasure J, Nissim I (1993) Effect of glutamine on heat-shock-induced mRNA and stress proteins. J Cell Physiol 157:313–318

    Article  PubMed  CAS  Google Scholar 

  61. Wischmeyer PE, Musch MW, Madonna MB, Thisted R, Chang EB (1997) Glutamine protects intestinal epithelial cells: role of inducible HSP 70. Am J Physiol 272:G879–884

    PubMed  CAS  Google Scholar 

  62. Wischmeyer PE, Kahana MD, Wolfson R, Ren H, Musch M, Chang E (2001) Glutamine induces heat shock protein and protects against endotoxin shock in the rat. J Appl Physiol 90:2403–2410.

    PubMed  CAS  Google Scholar 

  63. Singleton KD, Serkova N, Beckley VE, Wischmeyer PE (2005) Glutamine attenuates lung injury and improves survival after sepsis: Role of enhanced heat shock expression. Crit Care Med 33:1206–1213

    Article  PubMed  CAS  Google Scholar 

  64. Zhou Z, Thompson JR (1997) Regulation of protein turnover by glutamine in heat-shocked skeletal myotubes. Biochim Biophys Acta 1357:234–242

    Article  PubMed  CAS  Google Scholar 

  65. Palmer TEA, Griffiths RD, Jones C (1996) Effect of parenteral l-glutamine on muscle in the very severely ill. Nutrition 12:316–320

    PubMed  CAS  Google Scholar 

  66. Biolo G, Zorat F, Antonione R, Ciocchi B (2005) Muscle glutamine depletion in the intensive care unit. Int J Biochem Cell Biol 37:2169–2179

    Article  PubMed  CAS  Google Scholar 

  67. Oudemans-van Straaten HM, Bosman RJ, Treskes M, et al (2001) Plasma glutamine depletion and patient outcome in acute ICU admissions. Intensive Care Med 27:84–90

    Article  PubMed  CAS  Google Scholar 

  68. Pittet JF, Lee H, Morabito D, Howard MB, Welch WJ, Mackersie RC (2002) Serum Levels of HSP 72 measured early after trauma correlate with survival. J Trauma 52:611–617

    PubMed  Google Scholar 

  69. McArdle A, Vasilaki A, Jackson MJ (2002) Exercise and skeletal muscle ageing: cellular and molecular mechanisms. Ageing Res Rev 1:79–93

    Article  PubMed  CAS  Google Scholar 

  70. Ziegler TR, Ogden LG, Singleton KD, et al (2005) Parenteral glutamine increases serum heat shock protein 70 in critically ill patients. Intensive Care Med 31:1079–1086

    Article  PubMed  Google Scholar 

  71. Griffiths RD, Jones C, Palmer TEA (1997) Six-month outcome of critically ill patients given glutamine-supplemented parenteral nutrition. Nutrition 4:296–302

    Google Scholar 

  72. Griffiths RD, Allen KD, Andrews FJ, Jones C (2002) Infection, multiple organ failure, and survival in the intensive care unit: Influence of glutamine-supplemented parenteral nutrition on acquired infection. Nutrition 18:546–552

    Article  PubMed  CAS  Google Scholar 

  73. Lexell J, Taylor CC, Sjostrom M (1988) What is the cause of the ageing atrophy? Total number, size and proportion of different fiber types studied in whole vastus lateralis muscle from15-to 83-year-old men. J Neurol Sci 84:275–294

    Article  PubMed  CAS  Google Scholar 

  74. Young A (1986) Exercise physiology in geriatric practice Acta Med Scand Suppl 711:227–232

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Griffiths, R.D., Bongers, T., McArdle, A. (2007). Skeletal Muscle. In: Abraham, E., Singer, M. (eds) Mechanisms of Sepsis-Induced Organ Dysfunction and Recovery. Update in Intensive Care and Emergency Medicine, vol 44. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-30328-6_31

Download citation

  • DOI: https://doi.org/10.1007/3-540-30328-6_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-30157-8

  • Online ISBN: 978-3-540-30328-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics