Skip to main content

Part of the book series: Update in Intensive Care and Emergency Medicine ((UICMSOFT,volume 44))

  • 1179 Accesses

Conclusion

Development of acute renal failure during sepsis syndrome is common and portends a poor outcome. The interplay between systemic host responses, local insults in the kidney, vascular bed, and immune system, all play a role in the development of sepsis-induced acute renal failure. Despite advances in critical care, mortality rates have remained high for sepsis-associated acute renal failure. This may be, in part, a function of our poor understanding of the mechanisms of sepsis-induced acute renal failure, leading to misguided management strategies for acute renal failure. Improved understanding of various emerging mechanisms of sepsis-induced acute renal failure such as epithelial barrier dysfunction, apoptosis, and cytokine-mediated injury, should open newer avenues of therapeutic targets in this field. As has often been the case in the study of sepsis, simple universal mechanisms such as tissue perfusion, have failed to explain the diverse and complex clinical response, and therapeutic strategies aimed at single mechanisms have not been successful. The pathophysiologic mechanisms now understood to be operative in sepsis-induced acute renal failure overlap and interact at many levels. Therefore, therapeutic strategies to prevent acute renal failure or to facilitate recovery will likely need to be multifaceted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. de Mendonca A, Vincent JL, Suter PM, et al (2000) Acute renal failure in the ICU: risk factors and outcome evaluated by the SOFA score. Intensive Care Med 26:915–921

    Article  PubMed  Google Scholar 

  2. Uchino S, Kellum JA, Bellomo R, et al (2005) Acute renal failure in critically ill patients: a multinational, multicenter study. JAMA 294:813–818

    Article  PubMed  CAS  Google Scholar 

  3. Schrier RW, Wang W (2004) Acute renal failure and sepsis. N Engl J Med 351:159–169

    Article  PubMed  CAS  Google Scholar 

  4. Clermont G, Acker CG, Angus DC, Sirio CA, Pinsky MR, Johnson JP (2002) Renal failure in the ICU: comparison of the impact of acute renal failure and end-stage renal disease on ICU outcomes. Kidney Int 62:986–996

    Article  PubMed  Google Scholar 

  5. Kellum JA, Angus DC (2002) Patients are dying of acute renal failure. Crit Care Med 30:2156–2157

    Article  PubMed  Google Scholar 

  6. Wan L, Bellomo R, Di Giantomasso D, Ronco C (2003) The pathogenesis of septic acute renal failure. Curr Opin Crit Care 9:496–502

    Article  PubMed  Google Scholar 

  7. Bonegio R, Lieberthal W (2002) Role of apoptosis in the pathogenesis of acute renal failure. Curr Opin Nephrol Hypertens 11:301–308

    Article  PubMed  Google Scholar 

  8. Fink MP, Delude RL (2005) Epithelial barrier dysfunction: a unifying theme to explain the pathogenesis of multiple organ dysfunction at the cellular level. Crit Care Clin 21:177–196

    Article  PubMed  CAS  Google Scholar 

  9. Messmer UK, Briner VA, Pfeilschifter J (2000) Basic fibroblast growth factor selectively enhances TNF-alpha-induced apoptotic cell death in glomerular endothelial cells: effects on apoptotic signaling pathways. J Am Soc Nephrol 11:2199–2211

    PubMed  CAS  Google Scholar 

  10. Marshall JC, Vincent JL, Fink MP, et al (2003) Measures, markers, and mediators: toward a staging system for clinical sepsis. A report of the Fifth Toronto Sepsis Roundtable, Toronto, Ontario, Canada, October 25–26, 2000. Crit Care Med 31:1560–1567

    Article  PubMed  Google Scholar 

  11. Kellum JA, Decker M (2001) Use of dopamine in acute renal failure: a meta-analysis. Crit Care Med 29:1526–1531

    Article  PubMed  CAS  Google Scholar 

  12. Bellomo R, Chapman M, Finfer S, Hickling K, Myburgh J (2000) Low-dose dopamine in patients with early renal dysfunction: a placebo-controlled randomised trial. Australian and New Zealand Intensive Care Society (ANZICS) Clinical Trials Group. Lancet 356:2139–2143

    Article  PubMed  CAS  Google Scholar 

  13. Kikeri D, Pennell JP, Hwang KH, Jacob AI, Richman AV, Bourgoignie JJ (1986) Endotoxemic acute renal failure in awake rats. Am J Physiol 250:F1098–F1106

    PubMed  CAS  Google Scholar 

  14. Badr KF (1992) Sepsis-associated renal vasoconstriction: potential targets for future therapy. Am J Kidney Dis 20:207–213

    PubMed  CAS  Google Scholar 

  15. Langenberg C, Bellomo R, May C, Wan L, Egi M, Morgera S (2005) Renal blood flow in sepsis. Crit Care 9:R363–R374

    Article  PubMed  Google Scholar 

  16. Brezis M, Rosen S (1995) Hypoxia of the renal medulla-its implications for disease. N Engl J Med 332:647–655

    Article  PubMed  CAS  Google Scholar 

  17. Di Giantomasso D, Morimatsu H, May CN, Bellomo R (2003) Intrarenal blood flow distribution in hyperdynamic septic shock: Effect of norepinephrine. Crit Care Med 31:2509–2513

    Article  PubMed  CAS  Google Scholar 

  18. Camussi G, Ronco C, Montrucchio G, Piccoli G (1998) Role of soluble mediators in sepsis and renal failure. Kidney Int Suppl 66:S38–S42

    PubMed  CAS  Google Scholar 

  19. Linas SL, Whittenburg D, Repine JE (1991) Role of neutrophil derived oxidants and elastase in lipopolysaccharide-mediated renal injury. Kidney Int 39:618–623

    PubMed  CAS  Google Scholar 

  20. Xia Y, Feng L, Yoshimura T, Wilson CB (1993) LPS-induced MCP-1, IL-1 beta, and TNF-alpha mRNA expression in isolated erythrocyte-perfused rat kidney. Am J Physiol 264:F774–F780

    PubMed  CAS  Google Scholar 

  21. Thijs A, Thijs LG (1998) Pathogenesis of renal failure in sepsis. Kidney Int Suppl 66:S34–S37

    PubMed  CAS  Google Scholar 

  22. Baud L, Oudinet JP, Bens M, et al (1989) Production of tumor necrosis factor by rat mesangial cells in response to bacterial lipopolysaccharide. Kidney Int 35:1111–1118

    PubMed  CAS  Google Scholar 

  23. Kohan DE (1994) Role of endothelin and tumour necrosis factor in the renal response to sepsis. Nephrol Dial Transplant 9Suppl 4:73–77

    PubMed  Google Scholar 

  24. Messmer UK, Briner VA, Pfeilschifter J (1999) Tumor necrosis factor-alpha and lipopolysaccharide induce apoptotic cell death in bovine glomerular endothelial cells. Kidney Int 55:2322–2337

    Article  PubMed  CAS  Google Scholar 

  25. Knotek M, Rogachev B, Wang W, et al (2001) Endotoxemic renal failure inmice: Role of tumor necrosis factor independent of inducible nitric oxide synthase. Kidney Int 59:2243–2249

    PubMed  CAS  Google Scholar 

  26. van Lanschot JJ, Mealy K, Jacobs DO, Evans DA, Wilmore DW (1991) Splenectomy attenuates the inappropriate diuresis associated with tumor necrosis factor administration. Surg Gynecol Obstet 172:293–297

    PubMed  Google Scholar 

  27. Cunningham PN, Dyanov HM, Park P, Wang J, Newell KA, Quigg RJ (2002) Acute renal failure in endotoxemia is caused by TNF acting directly on TNF receptor-1 in kidney. J Immunol 168:5817–5823

    PubMed  CAS  Google Scholar 

  28. Rodriguez-Wilhelmi P, Montes R, Matsukawa A, et al (2003) Tumor necrosis factor-alpha inhibition reduces CXCL-8 levels but fails to prevent fibrin generation and does not improve outcome in a rabbit model of endotoxic shock. J Lab Clin Med 141:257–264

    Article  PubMed  CAS  Google Scholar 

  29. Cohen RI, Hassell AM, Marzouk K, Marini C, Liu SF, Scharf SM (2001) Renal effects of nitric oxide in endotoxemia. Am J Respir Crit Care Med 164:1890–1895

    PubMed  CAS  Google Scholar 

  30. Spain DA, Wilson MA, Garrison RN (1994) Nitric oxide synthase inhibition exacerbates sepsis-induced renal hypoperfusion. Surgery 116:322–330

    PubMed  CAS  Google Scholar 

  31. Knotek M, Esson M, Gengaro P, Edelstein CL, Schrier RW (2000) Desensitization of soluble guanylate cyclase in renal cortex during endotoxemia in mice. J Am Soc Nephrol 11:2133–2137

    PubMed  CAS  Google Scholar 

  32. Zimmerman GA, Prescott SM, McIntyre TM (1992) Endothelial cell interactions with granulocytes: tethering and signaling molecules. Immunol Today 13:93–100

    Article  PubMed  CAS  Google Scholar 

  33. Wang J, Dunn MJ (1987) Platelet-activating factor mediates endotoxin-induced acute renal insufficiency in rats. Am J Physiol 253:F1283–F1289

    PubMed  CAS  Google Scholar 

  34. Shimizu T, Kuroda T, Ikeda M, Hata S, Fujimoto M(1998) Potential contribution of endothelin to renal abnormalities in glycerol-induced acute renal failure in rats. J Pharmacol Exp Ther 286:977–983

    PubMed  CAS  Google Scholar 

  35. Forbes JM, Hewitson TD, Becker GJ, Jones CL (2001) Simultaneous blockade of endothelin A and B receptors in ischemic acute renal failure is detrimental to long-term kidney function. Kidney Int 59:1333–1341

    Article  PubMed  CAS  Google Scholar 

  36. Wang W, Jittikanont S, Falk SA, et al (2003) Interaction among nitric oxide, reactive oxygen species, and antioxidants during endotoxemia-related acute renal failure. Am J Physiol Renal Physiol 284:F532–F537

    PubMed  CAS  Google Scholar 

  37. Himmelfarb J, McMonagle E, Freedman S, et al (2004) Oxidative stress is increased in critically ill patients with acute renal failure. J Am Soc Nephrol 15:2449–2456

    Article  PubMed  CAS  Google Scholar 

  38. Stevenson BR (1999) Understanding tight junction clinical physiology at the molecular level. J Clin Invest 104:3–4

    Article  PubMed  CAS  Google Scholar 

  39. Lechner J, Pfaller W (2001) Interferon alpha2b increases paracellular permeability of renal proximal tubular LLC-PK1 cells via a mitogen activated protein kinase signaling pathway. Ren Fail 23:573–588

    Article  PubMed  CAS  Google Scholar 

  40. Lieberthal W, Menza SA, Levine JS (1998) Graded ATP depletion can cause necrosis or apoptosis of cultured mouse proximal tubular cells. Am J Physiol 274:F315–F327

    PubMed  CAS  Google Scholar 

  41. Kaushal GP, Basnakian AG, Shah SV (2004) Apoptotic pathways in ischemic acute renal failure. Kidney Int 66:500–506

    Article  PubMed  CAS  Google Scholar 

  42. Oberbauer R, Rohrmoser M, Regele H, Muhlbacher F, Mayer G (1999) Apoptosis of tubular epithelial cells in donor kidney biopsies predicts early renal allograft function. J Am Soc Nephrol 10:2006–2013

    PubMed  CAS  Google Scholar 

  43. Schumer M, Colombel MC, Sawczuk IS, et al (1992) Morphologic, biochemical, and molecular evidence of apoptosis during the reperfusion phase after brief periods of renal ischemia. Am J Pathol 140:831–838

    PubMed  CAS  Google Scholar 

  44. Dagher PC (2000) Modeling ischemia in vitro: selective depletion of adenine and guanine nucleotide pools. Am J Physiol Cell Physiol 279:C1270–C1277

    PubMed  CAS  Google Scholar 

  45. Kelly KJ, Plotkin Z, Dagher PC (2001) Guanosine supplementation reduces apoptosis and protects renal function in the setting of ischemic injury. J Clin Invest 108:1291–1298

    Article  PubMed  CAS  Google Scholar 

  46. Leist M, Jaattela M (2001) Four deaths and a funeral: from caspases to alternative mechanisms. Nat Rev Mol Cell Biol 2:589–598

    Article  PubMed  CAS  Google Scholar 

  47. Lorz C, Ortiz A, Justo P, et al (2000) Proapoptotic Fas ligand is expressed by normal kidney tubular epithelium and injured glomeruli. J Am Soc Nephrol 11:1266–1277

    PubMed  CAS  Google Scholar 

  48. Meldrum KK, Meldrum DR, Hile KL, et al (2001) p38 MAPK mediates renal tubular cell TNF-alpha production and TNF-alpha-dependent apoptosis during simulated ischemia. Am J Physiol Cell Physiol 281:C563–C570

    PubMed  CAS  Google Scholar 

  49. Feldenberg LR, Thevananther S, del Rio M, de Leon M, Devarajan P (1999) Partial ATP depletion induces Fas-and caspase-mediated apoptosis in MDCK cells. Am J Physiol 276:F837–F846

    PubMed  CAS  Google Scholar 

  50. Jo SK, Cha DR, Cho WY, et al (2002) Inflammatory cytokines and lipopolysaccharide induce Fas-mediated apoptosis in renal tubular cells. Nephron 91:406–415

    Article  PubMed  CAS  Google Scholar 

  51. Carraway MS, Welty-Wolf KE, Miller DL, et al (2003) Blockade of tissue factor: treatment for organ injury in established sepsis. Am J Respir Crit Care Med 167:1200–1209

    Article  PubMed  Google Scholar 

  52. Bernard GR, Vincent JL, Laterre PF, et al (2001) Efficacy and safety of recombinant human activated protein C for severe sepsis. N Engl J Med 344:699–709

    Article  PubMed  CAS  Google Scholar 

  53. Lameire N (2005) The pathophysiology of acute renal failure. Crit Care Clin 21:197–210

    Article  PubMed  Google Scholar 

  54. Price PM, Megyesi J, Saf Irstein RL (2004) Cell cycle regulation: repair and regeneration in acute renal failure. Kidney Int 66:509–514

    Article  PubMed  CAS  Google Scholar 

  55. Al Awqati Q, Oliver JA (2002) Stem cells in the kidney. Kidney Int 61:387–395

    Article  Google Scholar 

  56. Hammerman MR, Miller SB (1994) Therapeutic use of growth factors in renal failure. J Am Soc Nephrol 5:1–11

    PubMed  CAS  Google Scholar 

  57. Kellum JA (2004) What can be done about acute renal failure? Minerva Anestesiol 70:181–188

    PubMed  CAS  Google Scholar 

  58. Rookmaaker MB, Verhaar MC, van Zonneveld AJ, Rabelink TJ (2004) Progenitor cells in the kidney: biology and therapeutic perspectives. Kidney Int 66:518–522

    Article  PubMed  Google Scholar 

  59. Poulsom R, Forbes SJ, Hodivala-Dilke K, et al (2001) Bone marrow contributes to renal parenchymal turnover and regeneration. J Pathol 195:229–235

    Article  PubMed  CAS  Google Scholar 

  60. Lange C, Togel F, Ittrich H, et al (2005) Administered mesenchymal stem cells enhance recovery from ischemia/reperfusion-induced acute renal failure in rats. Kidney Int 68:1613–1617

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Raghavan, M., Venkataraman, R., Kellum, J.A. (2007). Sepsis-induced Acute Renal Failure and Recovery. In: Abraham, E., Singer, M. (eds) Mechanisms of Sepsis-Induced Organ Dysfunction and Recovery. Update in Intensive Care and Emergency Medicine, vol 44. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-30328-6_28

Download citation

  • DOI: https://doi.org/10.1007/3-540-30328-6_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-30157-8

  • Online ISBN: 978-3-540-30328-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics