Skip to main content

Part of the book series: Update in Intensive Care and Emergency Medicine ((UICMSOFT,volume 44))

  • 1150 Accesses

Conclusion

The understanding of sepsis-induced organ dysfunction has advanced considerably over the last few years. The interaction between signaling systems and metabolic pathways is a particularly ‘hot’ area of ongoing research. Energy production and the availability of substrates in the acute phase seem to have a crucial impact on the course of sepsis and on mortality and morbidity. Later on, during MOF, the same metabolic pathways determine outcome, but the mechanisms and clinical picture are different. Knowledge of these mechanisms is, therefore, necessary for optimal clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Novak F, Heyland DK, Avenell A, Drover JW, Su X (2002) Glutamine supplementation in serious illness: a systematic review of the evidence. Crit Care Med 30:2022–2029

    Article  PubMed  CAS  Google Scholar 

  2. Van den Berghe G, Wouters P, Weekers F, et al (2001) Intensive insulin therapy in the critically ill patients. N Engl J Med 345:1359–1367

    Article  PubMed  Google Scholar 

  3. Garlick PJ (1986) Protein synthesis and energy expenditure in relation to feeding. Int J Vitam Nutr Res 56:197–200

    PubMed  CAS  Google Scholar 

  4. McClave SA, Snider HL (2001) Dissecting the energy needs of the body. Curr Opin Clin Nutr Metab Care 4:143–147

    PubMed  CAS  Google Scholar 

  5. Dvir D, Cohen J, Singer P (2006) Computerized energy balance and complications in critically ill patients: An observational study. Clin Nutr 25:37–44

    Article  PubMed  Google Scholar 

  6. Reid CL, Campbell IT, Little RA (2004) Muscle wasting and energy balance in critical illness. Clin Nutr 23:273–280

    Article  PubMed  Google Scholar 

  7. Villet S, Chiolero RL, Bollmann MD, et al (2005) Negative impact of hypocaloric feeding and energy balance on clinical outcome in ICU patients. Clin Nutr 24:502–509

    Article  PubMed  Google Scholar 

  8. Arnold J, Campbell IT, Samuels TA, et al (1993) Increased whole body protein breakdown predominates over increased whole body protein synthesis in multiple organ failure. Clin Sci (Lond) 84:655–661

    PubMed  CAS  Google Scholar 

  9. Garlick PJ, McNurlan MA (1998) Measurement of protein synthesis in human tissues by the flooding method. Curr Opin Clin Nutr Metab Care 1:455–460

    Article  PubMed  CAS  Google Scholar 

  10. Barle H, Januszkiewicz A, Hallstrom L, et al (2002) Albumin synthesis in humans increases immediately following the administration of endotoxin. Clin Sci (Lond) 103:525–531

    Article  PubMed  CAS  Google Scholar 

  11. Barle H, Gamrin L, Essen P, McNurlan MA, Garlick PJ, Wernerman J (2001) Growth hormone does not affect albumin synthesis in the critically ill. Intensive Care Med 27:836–843

    Article  PubMed  CAS  Google Scholar 

  12. Essen P, McNurlan MA, Gamrin L, et al (1998) Tissue protein synthesis rates in critically ill patients. Crit Care Med 26:92–100

    Article  PubMed  CAS  Google Scholar 

  13. Januszkiewicz J, Klaude M, Loré K, et al (2005) In vivo protein synthesis in immune cells of ICU patients. Clin Nutr 24:575 (abst)

    Google Scholar 

  14. Wernerman J, Vinnars E (1987) The effect of trauma and surgery on interorgan fluxes of amino acids in man. Clin Sci (Lond) 73:129–133

    PubMed  CAS  Google Scholar 

  15. Klaude M, Hammarqvist F, Wemerman J (2005) An assay of microsomal membraneassociated proteasomes demonstrates increased proteolytic activity in skeletal muscle of intensive care unit patients. Clin Nutr 24:259–265

    Article  PubMed  CAS  Google Scholar 

  16. Tjader I, Rooyackers O, Forsberg AM, Vesali RF, Garlick PJ, Wernerman J (2004) Effects on skeletal muscle of intravenous glutamine supplementation to ICU patients. Intensive Care Med 30:266–275

    Article  PubMed  Google Scholar 

  17. Biolo G, Bosutti A, Iscra F, Toigo G, Gullo A, Guarnieri G (2000) Contribution of the ubiquitin-proteasome pathway to overall muscle proteolysis in hypercatabolic patients. Metabolism 49:689–691

    Article  PubMed  CAS  Google Scholar 

  18. Tiao G, Hobler S, Wang JJ, et al (1997) Sepsis is associated with increased mRNAs of the ubiquitin-proteasome proteolytic pathway in human skeletal muscle. J Clin Invest 99:163–168

    Article  PubMed  CAS  Google Scholar 

  19. Mansoor O, Beaufrere B, Boirie Y, et al (1996) Increased mRNA levels for components of the lysosomal, Ca2+-activated, and ATP-ubiquitin-dependent proteolytic pathways in skeletal muscle from head trauma patients. Proc Natl Acad Sci USA 93:2714–2718

    Article  PubMed  CAS  Google Scholar 

  20. Klaude M, Fredriksson K, Hammarqvist F, Ljungqvist O, Wernerman J, Rooyackers O (2005) Proteasome proteolytic activity increases in leg and intercostals muscle during critical illness. Clin Nutr 24:572 (abst)

    Article  CAS  Google Scholar 

  21. Biolo G, Fleming RY, Maggi SP, Nguyen TT, Herndon DN, Wolfe RR (2002) Inverse regulation of protein turnover and amino acid transport in skeletal muscle of hypercatabolic patients. J Clin Endocrinol Metab 87:3378–3384

    Article  PubMed  CAS  Google Scholar 

  22. Tjader I, Essen P, Garlick PJ, McMnurlan MA, Rooyackers O, Wernerman J (2004) Impact of surgical trauma on human skeletal muscle protein synthesis. Clin Sci (Lond) 107:601–607

    Article  PubMed  Google Scholar 

  23. Tjader I, Rooyackers O, Klaude M, Nennesmo I, Wernerman J (2005) Reproducibility of skeletal muscle protein synthesis rate in intensive care patients. Clin Nutr 24:611 (abst)

    Google Scholar 

  24. Biolo G, Williams BD, Fleming RY, Wolfe RR (1999) Insulin action on muscle protein kinetics and amino acid transport during recovery after resistance exercise. Diabetes 48:949–957

    PubMed  CAS  Google Scholar 

  25. Vesali RF, Klaude M, Rooyackers O, Wernerman J (2005) Muscle protein turnover in muscle following an endotoxin challenge to healthy volunteers. Clin Nutr 24:608–609

    Google Scholar 

  26. Rooyackers O, Prohn M, Van Riel N, Wernerman J (2005) Bolus injection on 13C-glutamine to study glutamine metabolism in humans. Clin Nutr 24:575–576

    Google Scholar 

  27. Van Acker BA, Hulsewe KW, Wagenmakers AJ, et al (1998) Absence of glutamine isotopic steady state: implications for the assessment of whole-body glutamine production rate. Clin Sci (Lond) 95:339–346

    Article  PubMed  Google Scholar 

  28. Jackson NC, Carroll PV, Russell-Jones DL, Sonksen PH, Treacher DF, Umpleby AM (2000) Effects of glutamine supplementation, GH, and IGF-I on glutamine metabolism in critically ill patients. Am J Physiol Endocrinol Metab 278:E226–233

    PubMed  CAS  Google Scholar 

  29. Berg A, Gamrin L, Martling CR, Rooyackers O, Wernerman J (2004) Effect of glutamine supplementation on muscle glutamine release in ICU patients during continous renal replacement therapy (CRRT). Clin Nutr 23:845 (abst)

    Google Scholar 

  30. Vesali RF, Klaude M, Rooyackers OE, Tjader I, Barle H, Wernerman J (2002). Longitudinal patternof glutamine/glutamatebalance across the leg inlong-stay intensive careunitpatients. Clin Nutr 21:505–514

    Article  PubMed  CAS  Google Scholar 

  31. Vesali RF, Klaude M, Rooyackers O, Wernerman J (2005) Amino acid metabolism in leg muscle after an endotoxin injection in healthy volunteers. Am J Physiol Endocrinol Metab 288:E360–364

    Article  PubMed  CAS  Google Scholar 

  32. Gamrin L, Andersson K, Hultman E, Nilsson E, Essen P, Wernerman J (1997) Longitudinal changes of biochemical parameters in muscle during critical illness. Metabolism 46:756–762

    Article  PubMed  CAS  Google Scholar 

  33. Oudemans-van Straaten HM, Bosman RJ, Treskes M, van der Spoel HJ, Zandstra DF (2001) Plasma glutamine depletion and patient outcome in acute ICU admissions. Intensive Care Med 27:84–90

    Article  PubMed  CAS  Google Scholar 

  34. van Acker BA, Hulsewe KW, Wagenmakers AJ, Soeters PB, von Meyenfeldt MF (2000) Glutamine appearance rate in plasma is not increased after gastrointestinal surgery in humans. J Nutr 130:566–1571

    Google Scholar 

  35. Rooyackers O, Prohn M, Van Riel N, Wernerman J (2005) Effect of parenteral alanyl-glutamine on glutamine production rate. Intensive Care Med 31:S33 (abst)

    Google Scholar 

  36. Goeters C, Wenn A, Mertes N, et al (2002) Parenteral L-alanyl-L-glutamine improves 6-month outcome in critically ill patients. Crit Care Med 30:2032–2037

    Article  PubMed  CAS  Google Scholar 

  37. Griffiths RD, Jones C, Palmer TE (1997) Six-month outcome of critically ill patients given glutamine-supplemented parenteral nutrition. Nutrition 13:295–302

    PubMed  CAS  Google Scholar 

  38. Wischmeyer PE (2002) Glutamine and heat shock protein expression. Nutrition 18:225–228

    Article  PubMed  CAS  Google Scholar 

  39. Ziegler TR, Ogden LG, Singleton KD, et al (2005) Parenteral glutamine increases serum heat shock protein 70 in critically ill patients. Intensive Care Med 31:1079–1086

    Article  PubMed  Google Scholar 

  40. Berg A, Rooyackers O, Norberg A, Wernerman J (2005) Elimination kinetics of L-alanyl-Lglutamine in ICU patients. Amino Acids 29:221–228

    Article  PubMed  CAS  Google Scholar 

  41. Hammarqvist F, Luo JL, Cotgreave IA, Andersson K, Wernerman J (1997) Skeletal muscle glutathione is depleted in critically ill patients. Crit Care Med 25:78–84

    Article  PubMed  CAS  Google Scholar 

  42. Flaring UB, Rooyackers OE, Hebert C, Bratel T, Hammarqvist F, Wernerman J (2005) Temporal changes in whole-blood and plasma glutathione in ICU patients with multiple organ failure. Intensive Care Med 31:1072–1078

    Article  PubMed  CAS  Google Scholar 

  43. Flaring UB, Rooyackers OE, Wernerman J, Hammarqvist F (2003) Temporal changes in muscle glutathione in ICU patients. Intensive Care Med 29:2193–2198

    Article  PubMed  CAS  Google Scholar 

  44. Brealey D, Brand M, Hargreaves I, et al (2002) Association between mitochondrial dysfunction and severity and outcome of septic shock. Lancet 360:219–223

    Article  PubMed  CAS  Google Scholar 

  45. Rutten EP, Engelen MP, Schols AM, Deutz NE (2005) Skeletal muscle glutamate metabolism in health and disease: state of the art. Curr Opin Clin Nutr Metab Care 8:41–51

    PubMed  CAS  Google Scholar 

  46. Luo JL, Hammarqvist F, Andersson K, Wernerman J (1998) Surgical trauma decreases glutathione synthetic capacity in human skeletal muscle tissue. Am J Physiol 275:E359–365

    PubMed  CAS  Google Scholar 

  47. Flaring UB, Rooyackers OE, Wernerman J, Hammarqvist F (2003) Glutamine attenuates post-traumatic glutathione depletion in human muscle. Clin Sci (Lond) 104:275–282

    Article  PubMed  CAS  Google Scholar 

  48. Tischler ME, Fagan JM (1982) Relationship of the reduction-oxidation state to protein degradation in skeletal and atrial muscle. Arch Biochem Biophys 217:191–201

    Article  PubMed  CAS  Google Scholar 

  49. Fredriksson K, Hammarqvist F, Ljungqvist O, Wernerman J, Rooyackers O (2005) Derangements in energy metabolism in leg and intercostal muscle of critically ill patients. Clin Nutr 24:612 (abst)

    Google Scholar 

  50. Radell P, Ahlbeck K, Rooyackers O, Fredriksson K, Eriksson L (2005) Repeated measurement of neuromuscular function in ICU patients during prolonged mechanical ventilation. Anesthesiology 103:A1124 (abst)

    Google Scholar 

  51. McNurlan MA, Essen P, Heys SD, Buchan V, Garlick PJ, Wernerman J (1991) Measurement of protein synthesis in human skeletal muscle: further investigation of the flooding technique. Clin Sci (Lond) 81:557–564 (abst)

    PubMed  CAS  Google Scholar 

  52. Barle H, Nyberg B, Essen P, et al (1997) The synthesis rates of total liver protein and plasma albumin determined simultaneously in vivo in humans. Hepatology 25:154–158

    PubMed  CAS  Google Scholar 

  53. Barle H, Nyberg B, Ramel S, et al (1999) Inhibition of liver protein synthesis during laparoscopic surgery. Am J Physiol 277:E591–596

    PubMed  CAS  Google Scholar 

  54. Januszkiewicz A, Klaude M, Lore K, et al (2005) Determination of in vivo protein synthesis in human palatine tonsil. Clin Sci (Lond) 108:179–184

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rooyackers, O., Wernerman, J. (2007). Metabolic Pathways. In: Abraham, E., Singer, M. (eds) Mechanisms of Sepsis-Induced Organ Dysfunction and Recovery. Update in Intensive Care and Emergency Medicine, vol 44. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-30328-6_22

Download citation

  • DOI: https://doi.org/10.1007/3-540-30328-6_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-30157-8

  • Online ISBN: 978-3-540-30328-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics