Skip to main content

Part of the book series: Update in Intensive Care and Emergency Medicine ((UICMSOFT,volume 44))

  • 1171 Accesses

Conclusion

Hyperglycemia in critically ill patients is a result of an altered glucose metabolism. Apart from the upregulated glucose production (both gluconeogenesis and glycogenolysis), glucose uptake mechanisms are also affected during critical illness and contribute to the development of hyperglycemia. The higher levels of insulin, impaired peripheral glucoseuptake and elevated hepatic glucose production reflect the development of insulin resistance during critical illness.

Hyperglycemia in critically ill patients has been associated with increased mortality. Simply maintaining normoglycemia with insulin therapy improves survival and reduces morbidity in surgical and medical ICU patients, as shown by two large, randomized controlled studies. These results obtained from clinical studies were also confirmed in ‘real-life’ intensive care of a heterogeneous patient population admitted to a mixed medical/surgical ICU.

Prevention of glucose toxicity by strict glycemic control appears to be crucial, although other metabolic and non-metabolic effects of insulin, independent of glycemic control, may contribute to the clinical benefits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. McCowen KC, Malhotra A, Bistrian BR (2001) Stress-induced hyperglycemia. Crit Care Clin 17:107–124

    Article  PubMed  CAS  Google Scholar 

  2. Thorell A, Nygren J, Ljungqvist O (1999) Insulin resistance: a marker of surgical stress. Curr Opin Clin Nutr Metab Care 2:69–78

    Article  PubMed  CAS  Google Scholar 

  3. Van den Berghe G, Wouters P, Weekers F, et al (2001) Intensive insulin therapy in critically ill patients. N Engl J Med 345:1359–1367

    Article  PubMed  Google Scholar 

  4. Van den Berghe G, Wilmer A, Hermans G, et al (2006) Intensive insulin therapy in medical intensive care patients. N Engl J Med 354:449–461

    Article  PubMed  Google Scholar 

  5. Van den Berghe G, Wouters PJ, Bouillon R, et al (2003) Outcome benefit of intensive insuli therapy in the critically ill: Insulin dose versus glycemic control. Crit Care Med 31:359–366

    Article  PubMed  CAS  Google Scholar 

  6. Rovlias A, Kotsou S (2000) The influence of hyperglycemia on neurological outcome in patients with severe head injury. Neurosurgery 46:335–342

    Article  PubMed  CAS  Google Scholar 

  7. Jeremitsky E, Omert LA, Dunham CM, Wilberger J, Rodriguez A (2005) The impact of hyperglycemia on patients with severe brain injury. J Trauma 58:47–50

    PubMed  CAS  Google Scholar 

  8. Gore DC, Chinkes D, Heggers J, Herndon DN, Wolf SE, Desai M (2001) Association of hyperglycemia with increased mortality after severe burn injury. J Trauma 51:540–544

    PubMed  CAS  Google Scholar 

  9. Yendamuri S, Fulda GJ, Tinkoff GH (2003) Admissionhyperglycemia as aprognostic indicator in trauma. J Trauma 55:33–38

    PubMed  CAS  Google Scholar 

  10. Laird AM, Miller PR, Kilgo PD, Meredith JW, Chang MC (2004) Relationship of early hyperglycemia to mortality in trauma patients. J Trauma 56:1058–1062

    PubMed  Google Scholar 

  11. Bochicchio GV, Sung J, Joshi M, et al (2005) Persistent hyperglycemia is predictive of outcome in critically ill trauma patients. J Trauma 58:921–924

    Article  PubMed  Google Scholar 

  12. Capes SE, Hunt D, Malmberg K, Gerstein HC (2000) Stress hyperglycaemia and increased risk of death after myocardial infarction in patients with and without diabetes: a systematic overview. Lancet 355:773–778

    Article  PubMed  CAS  Google Scholar 

  13. Capes SE, Hunt D, Malmberg K, Pathak P, Gerstein HC (2001) Stress hyperglycemia and prognosis of stroke in nondiabetic and diabetic patients: a systematic overview. Stroke 32:2426–2432

    PubMed  CAS  Google Scholar 

  14. Krinsley JS (2003) Association between hyperglycemia and increased hospital mortality in a heterogeneous population of critically ill patients. Mayo Clin Proc 78:1471–1478

    PubMed  Google Scholar 

  15. Faustino EV, Apkon M (2005) Persistent hyperglycemia in critically ill children. J Pediatr 146:30–34

    Article  PubMed  Google Scholar 

  16. Van den Berghe G, Schoonheydt K, Becx P, Bruyninckx F, Wouters PJ (2005) Insulin therapy protects the central and peripheral nervous system of intensive care patients. Neurology 64:1348–1353

    PubMed  Google Scholar 

  17. Krinsley JS (2004) Effect of an intensive glucose management protocol on the mortality of critically ill adult patients. Mayo Clin Proc 79:992–1000

    Article  PubMed  Google Scholar 

  18. Grey NJ, Perdrizet GA (2004) Reduction of nosocomial infections in the surgical intensivecare unit by strict glycemic control. Endocr Pract 10(Suppl 2):46–52

    PubMed  Google Scholar 

  19. Hill M, McCallum R (1991) Altered transcriptional regulation of phosphoenolpyruvate carboxykinase in rats following endotoxin treatment. J Clin Invest 88:811–816

    PubMed  CAS  Google Scholar 

  20. Flores EA, Istfan N, Pomposelli JJ, Blackburn GL, Bistrian BR (1990) Effect of interleukin-1 and tumor necrosis factor/cachectin on glucose turnover in the rat. Metabolism 39:738–743

    Article  PubMed  CAS  Google Scholar 

  21. Lang CH, Dobrescu C, Bagby GJ (1992) Tumor necrosis factor impairs insulin action on peripheral glucose disposal and hepatic glucose output. Endocrinology 130:43–52

    Article  PubMed  CAS  Google Scholar 

  22. Sakurai Y, Zhang XJ, Wolfe RR (1996) TNF directly stimulates glucose uptake and leucine oxidation and inhibits FFA flux in conscious dogs. Am J Physiol 270:E864–E872

    PubMed  CAS  Google Scholar 

  23. Khani S, Tayek JA (2001) Cortisol increases gluconeogenesis in humans: its role in the metabolic syndrome. Clin Sci (Lond) 101:739–747

    Article  PubMed  CAS  Google Scholar 

  24. Watt MJ, Howlett KF, Febbraio MA, Spriet LL, Hargreaves M (2001) Adrenaline increases skeletal muscle glycogenolysis, pyruvate dehydrogenase activation and carbohydrate oxidation during moderate exercise in humans. J Physiol 534:269–278

    Article  PubMed  CAS  Google Scholar 

  25. Richter EA, Ruderman NB, Gavras H, Belur ER, Galbo H (1982) Muscle glycogenolysis during exercise: dual control by epinephrine and contractions. Am J Physiol 242:E25–E32

    PubMed  CAS  Google Scholar 

  26. Rodnick KJ, Piper RC, Slot JW, James DE (1992) Interaction of insulin and exercise on glucose transport in muscle. Diabetes Care 15:1679–1689

    PubMed  CAS  Google Scholar 

  27. Wolfe RR, Durkot MJ, Allsop JR, Burke JF (1979) Glucose metabolism in severely burned patients. Metabolism 28:1031–1039

    Article  PubMed  CAS  Google Scholar 

  28. Wolfe RR, Herndon DN, Jahoor F, Miyoshi H, Wolfe M (1987) Effect of severe burn injury on substrate cycling by glucose and fatty acids. N Engl J Med 317:403–408

    Article  PubMed  CAS  Google Scholar 

  29. Stephens JM, Bagby GJ, Pekala PH, Shepherd RE, Spitzer JJ, Lang CH (1992) Differential regulation of glucose transporter gene expression in adipose tissue or septic rats. Biochem Biophys Res Commun 183:417–422

    Article  PubMed  CAS  Google Scholar 

  30. Virkamaki A, Yki-Jarvinen H (1994) Mechanisms of insulin resistance during acute endotoxemia. Endocrinology 134:2072–2078

    Article  PubMed  CAS  Google Scholar 

  31. Meszaros K, Lang CH, Bagby GJ, Spitzer JJ (1987) Contributionof differentorgans toincreased glucose consumption after endotoxin administration. J Biol Chem 262:10965–10970

    PubMed  CAS  Google Scholar 

  32. Mesotten D, Swinnen JV, Vanderhoydonc F, Wouters PJ, Van den Berghe G (2004) Contribution of circulating lipids to the improved outcome of critical illness by glycemic control with intensive insulin therapy. J Clin Endocrinol Metab 89:219–226

    Article  PubMed  CAS  Google Scholar 

  33. Mesotten D, Delhanty PJ, Vanderhoydonc F, et al (2002) Regulation of insulin-like growth factor binding protein-1 during protracted critical illness. J Clin EndocrinolMetab 87:5516–5523

    Article  CAS  Google Scholar 

  34. Klip A, Tsakiridis T, Marette A, Ortiz PA (1994) Regulation of expression of glucose transporters by glucose: a review of studies in vivo and in cell cultures. FASEB J 8:43–53

    PubMed  CAS  Google Scholar 

  35. Van den Berghe G (2004) How does blood glucose control with insulin save lives in intensive care? J Clin Invest 114:1187–1195

    Article  PubMed  CAS  Google Scholar 

  36. Pekala P, Marlow M, Heuvelman D, Connolly D (1990) Regulation of hexose transport in aortic endothelial cells by vascular permeability factor and tumor necrosis factor-alpha, but not by insulin. J Biol Chem 265:18051–18054

    PubMed  CAS  Google Scholar 

  37. Shikhman AR, Brinson DC, Valbracht J, Lotz MK (2001) Cytokine regulation of facilitated glucose transport in human articular chondrocytes. J Immunol 167:7001–7008

    PubMed  CAS  Google Scholar 

  38. Quinn LA, McCumbee WD (1998) Regulation of glucose transport by angiotensin II and glucose in cultured vascular smooth muscle cells. J Cell Physiol 177:94–102

    Article  PubMed  CAS  Google Scholar 

  39. Clerici C, Matthay MA (2000) Hypoxia regulates gene expression of alveolar epithelial transport proteins. J Appl Physiol 88:1890–1896

    PubMed  CAS  Google Scholar 

  40. Sanchez-Alvarez R, Tabernero A, Medina JM (2004) Endothelin-1 stimulates the translocation and upregulation of both glucose transporter and hexokinase in astrocytes: relationship with gap junctional communication. J Neurochem 89:703–714

    Article  PubMed  CAS  Google Scholar 

  41. Tirone TA, Brunicardi FC (2001) Overview of glucose regulation. World J Surg 25:461–467

    Article  PubMed  CAS  Google Scholar 

  42. Brownlee M (2001) Biochemistry and molecular cell biology of diabetic complications. Nature 414:813–820

    Article  PubMed  CAS  Google Scholar 

  43. Giugliano D, Ceriello A, Paolisso G (1996) Oxidative stress and diabetic vascular complications. Diabetes Care 19:257–267

    PubMed  CAS  Google Scholar 

  44. West IC (2000) Radicals and oxidative stress in diabetes. Diabet Med 17:171–180

    Article  PubMed  CAS  Google Scholar 

  45. Aulak KS, Koeck T, Crabb JW, Stuehr DJ (2004) Dynamics of protein nitration in cells and mitochondria. Am J Physiol Heart Circ Physiol 286:H30–H38

    Article  PubMed  CAS  Google Scholar 

  46. Vanhorebeek I, De Vos R, Mesotten D, Wouters PJ, Wolf-Peeters C, Van den Berghe G (2005) Protection of hepatocyte mitochondrial ultrastructure and function by strict blood glucose control with insulin in critically ill patients. Lancet 365:53–59

    Article  PubMed  CAS  Google Scholar 

  47. Taskinen MR (2001) Pathogenesis of dyslipidemia in type 2 diabetes. Exp Clin Endocrinol Diabetes 109(Suppl 2):S180–S188

    Article  PubMed  CAS  Google Scholar 

  48. Lanza-Jacoby S, Wong SH, Tabares A, Baer D, Schneider T (1992) Disturbances in the composition of plasma lipoproteins during gram-negative sepsis in the rat. Biochim Biophys Acta 1124:233–240

    PubMed  CAS  Google Scholar 

  49. Khovidhunkit W, Memon RA, Feingold KR, Grunfeld C (2000) Infection and inflammation-induced proatherogenic changes of lipoproteins. J Infect Dis 181(Suppl 3):S462–S472

    Article  PubMed  CAS  Google Scholar 

  50. Carpentier YA, Scruel O (2002) Changes in the concentration and composition of plasma lipoproteins during the acute phase response. Curr Opin Clin Nutr Metab Care 5:153–158

    Article  PubMed  CAS  Google Scholar 

  51. Jeschke MG, Klein D, Herndon DN (2004) Insulin treatment improves the systemic inflammatory reaction to severe trauma. Ann Surg 239:553–560

    Article  PubMed  Google Scholar 

  52. Tulenko TN, Sumner AE (2002) The physiology of lipoproteins. J Nucl Cardiol 9:638–649

    Article  PubMed  Google Scholar 

  53. Harris HW, Grunfeld C, Feingold KR, Rapp JH (1990) Human very low density lipoproteins and chylomicrons can protect against endotoxin-induced death in mice. J Clin Invest 86:696–702

    PubMed  CAS  Google Scholar 

  54. Harris HW, Grunfeld C, Feingold KR, et al (1993) Chylomicrons alter the fate of endotoxin, decreasing tumor necrosis factor release and preventing death. J Clin Invest 91:1028–1034

    PubMed  CAS  Google Scholar 

  55. Zhang XJ, Chinkes DL, Irtun O, Wolfe RR (2002) Anabolic action of insulin on skin wound protein is augmented by exogenous amino acids. Am J Physiol Endocrinol Metab 282:E1308–E1315

    PubMed  CAS  Google Scholar 

  56. Gore DC, Wolf SE, Sanford AP, Herndon DN, Wolfe RR (2004) Extremity hyperinsulinemia stimulates muscle protein synthesis in severely injured patients. Am J Physiol Endocrinol Metab 286:E529–E534

    Article  PubMed  CAS  Google Scholar 

  57. Agus MS, Javid PJ, Ryan DP, Jaksic T (2004) Intravenous insulin decreases protein breakdown in infants on extracorporeal membrane oxygenation. J Pediatr Surg 39:839–844

    Article  PubMed  Google Scholar 

  58. Hillier TA, Fryburg DA, Jahn LA, Barrett EJ (1998) Extreme hyperinsulinemia unmasks insulin’s effect to stimulate protein synthesis in the human forearm. Am J Physiol 274:E1067–E1074

    PubMed  CAS  Google Scholar 

  59. Weekers F, Giulietti AP, Michalaki M, et al (2003) Metabolic, endocrine, and immune effects of stress hyperglycemia in a rabbit model of prolonged critical illness. Endocrinology 144:5329–5338

    Article  PubMed  CAS  Google Scholar 

  60. Hansen TK, Thiel S, Wouters PJ, Christiansen JS, Van den Berghe G (2003) Intensive insulin therapy exerts antiinflammatory effects in critically ill patients and counteracts the adverse effect of low mannose-binding lectin levels. J Clin Endocrinol Metab 88:1082–1088

    Article  PubMed  CAS  Google Scholar 

  61. Jeschke MG, Klein D, Bolder U, Einspanier R (2004) Insulin attenuates the systemic inflammatory response in endotoxemic rats. Endocrinology 145:4084–4093

    Article  PubMed  CAS  Google Scholar 

  62. Klein D, Schubert T, Horch RE, Jauch KW, Jeschke MG (2004) Insulin treatment improves hepaticmorphology and function through modulation of hepatic signals after severe trauma. Ann Surg 240:340–349

    Article  PubMed  Google Scholar 

  63. Brix-Christensen V, Andersen SK, Andersen R, et al (2004) Acute hyperinsulinemia restrains endotoxin-induced systemic inflammatory response: an experimental study in a porcine model. Anesthesiology 100:861–870

    Article  PubMed  CAS  Google Scholar 

  64. Black CT, Hennessey PJ, Andrassy RJ (1990) Short-termhyperglycemia depresses immunity through nonenzymatic glycosylation of circulating immunoglobulin. J Trauma 30:830–832

    PubMed  CAS  Google Scholar 

  65. Nielson CP, Hindson DA (1989) Inhibition of polymorphonuclear leukocyte respiratory burst by elevated glucose concentrations in vitro. Diabetes 38:1031–1035

    PubMed  CAS  Google Scholar 

  66. Perner A, Nielsen SE, Rask-Madsen J (2003) High glucose impairs superoxide production from isolated blood neutrophils. Intensive Care Med 29:642–645

    PubMed  CAS  Google Scholar 

  67. Rassias AJ, Marrin CA, Arruda J, Whalen PK, Beach M, Yeager MP (1999) Insulin infusion improves neutrophil function in diabetic cardiac surgery patients. Anesth Analg 88:1011–1016

    Article  PubMed  CAS  Google Scholar 

  68. Rayfield EJ, Ault MJ, Keusch GT, Brothers MJ, Nechemias C, Smith H (1982) Infection and diabetes: the case for glucose control. Am J Med 72:439–450

    Article  PubMed  CAS  Google Scholar 

  69. Carr ME (2001) Diabetes mellitus: a hypercoagulable state. J Diabetes Complications 15:44–54

    Article  PubMed  CAS  Google Scholar 

  70. Calles-Escandon J, Garcia-Rubi E, Mirza S, Mortensen A (1999) Type 2 diabetes: one disease, multiple cardiovascular risk factors. Coron Artery Dis 10:23–30

    PubMed  CAS  Google Scholar 

  71. Williams E, Timperley WR, Ward JD, Duckworth T (1980) Electron microscopical studies of vessels in diabetic peripheral neuropathy. J Clin Pathol 33:462–470

    PubMed  CAS  Google Scholar 

  72. Patrassi GM, Vettor R, Padovan D, Girolami A (1982) Contact phase of blood coagulation in diabetes mellitus. Eur J Clin Invest 12:307–311

    Article  PubMed  CAS  Google Scholar 

  73. Carmassi F, Morale M, Puccetti R, et al (1992) Coagulation and fibrinolytic system impairment in insulin dependent diabetes mellitus. Thromb Res 67:643–654

    Article  PubMed  CAS  Google Scholar 

  74. Hughes A, McVerry BA, Wilkinson L, Goldstone AH, Lewis D, Bloom A (1983) Diabetes, a hypercoagulable state? Hemostatic variables in newly diagnosed type 2 diabetic patients. Acta Haematol 69:254–259

    PubMed  CAS  Google Scholar 

  75. Garcia Frade LJ, de la Calle H, Alava I, Navarro JL, Creighton LJ, Gaffney PJ (1987) Diabetes mellitus as a hypercoagulable state: its relationship with fibrin fragments and vascular damage. Thromb Res 47:533–540

    Article  PubMed  CAS  Google Scholar 

  76. Das UN (2003) Insulin: an endogenous cardioprotector. Curr Opin Crit Care 9:375–383

    Article  PubMed  Google Scholar 

  77. Langouche L, Vanhorebeek I, Vlasselaers D, et al (2005) Intensive insulin therapy protects the endothelium of critically ill patients. J Clin Invest 115:2277–2286

    Article  PubMed  CAS  Google Scholar 

  78. Siroen MP, van Leeuwen PA, Nijveldt RJ, Teerlink T, Wouters PJ, Van den Berghe G (2005) Modulation of asymmetric dimethylarginine in critically ill patients receiving intensive insulin treatment: a possible explanation of reduced morbidity and mortality? Crit Care Med 33:504–510

    Article  PubMed  CAS  Google Scholar 

  79. Finney SJ, Zekveld C, Elia A, Evans TW (2003) Glucose control and mortality in critically ill patients. JAMA 290:2041–2047

    Article  PubMed  CAS  Google Scholar 

  80. Ellger B, Debaveye Y, Vanhorebeek I, et al (2006) Survival benefits of intensive insulin therapy in critical illness: impact of maintaining normoglycemia versus glycemia-independent actions of insulin. Diabetes 55:1096–1105

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Langouche, L., Vanhorebeek, I., Van den Berghe, G. (2007). The Role of Insulin and Blood Glucose Control. In: Abraham, E., Singer, M. (eds) Mechanisms of Sepsis-Induced Organ Dysfunction and Recovery. Update in Intensive Care and Emergency Medicine, vol 44. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-30328-6_20

Download citation

  • DOI: https://doi.org/10.1007/3-540-30328-6_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-30157-8

  • Online ISBN: 978-3-540-30328-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics