Skip to main content

Part of the book series: Update in Intensive Care and Emergency Medicine ((UICMSOFT,volume 44))

Conclusion

In summary, the endothelium is a spatially distributed cell layer that displays significant heterogeneity in both structure and function. Endothelial heterogeneity reflects the capacity of the endothelium to meet the diverse needs of the underlying tissues. The endothelium plays an important role in mediating the host response to infection. Not only do endothelial cells express pattern recognition receptors, but they also govern local blood flow and vectorial transport of cells, solutes, and fluids across the vascular wall. The normal response to infection involves activation of endothelial cells without dysfunction. In sepsis, the endothelial response becomes excessive, sustained, and/or disseminated, at which point the activation phenotype poses a liability to the host and may be characterized as dysfunctional. Important goals for the future are to develop reliable diagnostic assays for monitoring the health of the endothelium and to elucidate those components of the endothelial response that are maladaptive and amenable to therapeutic targeting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aird WC (2005) Spatial and temporal dynamics of the endothelium. J Thromb Haemost 3:1392–1406

    PubMed  CAS  Google Scholar 

  2. Aird WC (2003) Endothelial cell heterogeneity. Crit Care Med 31(Suppl 4):S221–S230.

    PubMed  Google Scholar 

  3. Rosenberg RD, Aird WC (1999) Vascular-bed-specific hemostasis and hypercoagulable states. N Engl J Med 340:1555–1564

    PubMed  CAS  Google Scholar 

  4. Broze GJ Jr (2003) The rediscovery and isolation of TFPI. J Thromb Haemost 1:1671–1675

    PubMed  CAS  Google Scholar 

  5. Osterud B, Bajaj MS, Bajaj SP (1995) Sites of tissue factor pathway inhibitor (TFPI) and tissue factor expression under physiologic and pathologic conditions. Thromb Haemost 73:873–875

    PubMed  CAS  Google Scholar 

  6. Laszik Z, Mitro A, Taylor FB Jr, Ferrell G, Esmon CT (1997) Human protein C receptor is present primarily on endothelium of large blood vessels: implications for the control of the protein C pathway. Circulation 96:3633–3640

    PubMed  CAS  Google Scholar 

  7. Ishii H, Salem HH, Bell CE, Laposata EA, Majerus PW (1986) Thrombomodulin, an endothelial anticoagulant protein, is absent from the human brain. Blood 67:362–365

    PubMed  CAS  Google Scholar 

  8. Lacorre DA, Baekkevold ES, Garrido I, et al (2004) Plasticity of endothelial cells: rapid dedifferentiation of freshly isolated high endothelial venule endothelial cells outside the lymphoid tissue microenvironment. Blood 103:4164–4172

    PubMed  CAS  Google Scholar 

  9. Chi JT, Chang HY, Haraldsen G, et al (2003) Endothelial cell diversity revealed by global expression profiling. Proc Natl Acad Sci USA 100:10623–10628

    PubMed  CAS  Google Scholar 

  10. Aird WC (2006) Mechanisms of endothelial cell heterogeneity in health and disease. Circ Res 98:159–162

    PubMed  CAS  Google Scholar 

  11. Hwa C, Sebastian A, Aird WC (2005) Endothelial biomedicine: its status as an interdisciplinary field, its progress as a basic science, and its translational bench-to-bedside gap. Endothelium 12:139–151

    PubMed  CAS  Google Scholar 

  12. Passerini AG, Polacek DC, Shi C, et al (2004) Coexisting proinflammatory and antioxidative endothelial transcription profiles in a disturbed flow region of the adult porcine aorta. Proc Natl Acad Sci USA 101:2482–2487

    PubMed  CAS  Google Scholar 

  13. Dai G, Kaazempur-Mofrad MR, Natarajan S, et al (2004) Distinct endothelial phenotypes evoked by arterial waveforms derived from atherosclerosis-susceptible and-resistant regions of human vasculature. Proc Natl Acad Sci USA 101:14871–14876

    PubMed  CAS  Google Scholar 

  14. Hajra L, Evans AI, Chen M, Hyduk SJ, Collins T, Cybulsky MI (2000) The NF-kappa B signal transduction pathway in aortic endothelial cells is primed for activation in regions predisposed to atherosclerotic lesion formation. Proc Natl Acad Sci USA 97:9052–9057

    PubMed  CAS  Google Scholar 

  15. Lupu C, Westmuckett AD, Peer G, et al (2005) Tissue factor-dependent coagulation is preferentially up-regulated within arterial branching areas in a baboon model of Escherichia coli sepsis. Am J Pathol 167:1161–1172

    PubMed  CAS  Google Scholar 

  16. Derhaschnig U, Reiter R, Knobl P, Baumgartner M, Keen P, Jilma B (2003) Recombinant human activated protein C (rhAPC; drotrecogin alfa [activated]) has minimal effect on markers of coagulation, fibrinolysis, and inflammation in acute human endotoxemia. Blood 102:2093–2098

    PubMed  CAS  Google Scholar 

  17. Pajkrt D, van der Poll T, Levi M, et al (1997) Interleukin-10 inhibits activation of coagulation and fibrinolysis during human endotoxemia. Blood 89:2701–2705

    PubMed  CAS  Google Scholar 

  18. de Jonge E, Dekkers PE, Creasey AA, et al (2000) Tissue factor pathway inhibitor dose dependently inhibits coagulation activation without influencing the fibrinolytic and cytokine response during human endotoxemia. Blood 95:1124–1129

    PubMed  Google Scholar 

  19. Derhaschnig U, Bergmair D, Marsik C, Schlifke I, Wijdenes J, Jilma B (2004) Effect of interleukin-6 blockade on tissue factor-induced coagulation in human endotoxemia. Crit Care Med 32:1136–1140

    PubMed  CAS  Google Scholar 

  20. van der Poll T, Coyle SM, Levi M, et al (1997) Effect of a recombinant dimeric tumor necrosis factor receptor on inflammatory responses to intravenous endotoxin in normal humans. Blood 89:3727–3734

    PubMed  Google Scholar 

  21. Kinasewitz GT, Yan SB, Basson B, et al (2004) Universal changes in biomarkers of coagulation and inflammation occur in patients with severe sepsis, regardless of causative micro-organism. Crit Care 8:R82–R90

    PubMed  Google Scholar 

  22. Bernard GR, Ely EW, Wright TJ, et al (2001) Safety and dose relationship of recombinant human activated protein C for coagulopathy in severe sepsis. Crit Care Med 29:2051–2059

    PubMed  CAS  Google Scholar 

  23. Pawlinski R, Mackman N (2004) Tissue factor, coagulation proteases, and protease-activated receptors in endotoxemia and sepsis. Crit Care Med 32(suppl 5):S293–S297

    PubMed  CAS  Google Scholar 

  24. Fan J, Frey RS, Malik AB (2003) TLR4 signaling induces TLR2 expression in endothelial cells via neutrophil NADPH oxidase. J Clin Invest 112:1234–1243

    PubMed  CAS  Google Scholar 

  25. Cybulsky MI, Chan MK, Movat HZ (1988) Acute inflammation and microthrombosis induced by endotoxin, interleukin-1, and tumor necrosis factor and their implication in gram-negative infection. Lab Invest 58:365–378

    PubMed  CAS  Google Scholar 

  26. Khan SS, Solomon MA, McCoy JP Jr (2005) Detection of circulating endothelial cells and endothelial progenitor cells by flow cytometry. Cytometry B Clin Cytom 64:1–8

    PubMed  Google Scholar 

  27. Mutunga M, Fulton B, Bullock R, et al (2001) Circulating endothelial cells in patients with septic shock. Am J Respir Crit Care Med 163:195–200

    PubMed  CAS  Google Scholar 

  28. Liew A, Barry F, O’Brien T (2006) Endothelial progenitor cells: diagnostic and therapeutic considerations. Bioessays 28:261–270

    PubMed  Google Scholar 

  29. Ogura H, Tanaka H, Koh T, et al (2004) Enhanced production of endothelial microparticles with increased binding to leukocytes in patients with severe systemic inflammatory response syndrome. J Trauma 56:823–830

    PubMed  Google Scholar 

  30. Ley K (2003) The role of selectins in inflammation and disease. Trends Mol Med 9:263–268

    PubMed  CAS  Google Scholar 

  31. Weber C (2003) Novel mechanistic concepts for the control of leukocyte transmigration: specialization of integrins, chemokines, and junctional molecules. J Mol Med 81:4–19

    PubMed  CAS  Google Scholar 

  32. Lush CW, Cepinskas G, Sibbald WJ, Kvietys PR (2001) Endothelial E-and P-selectin expression in iNOS-deficient mice exposed to polymicrobial sepsis. Am J Physiol Gastrointest Liver Physiol 280:G291–297

    PubMed  CAS  Google Scholar 

  33. Laudes IJ, Guo RF, Riedemann NC, et al (2004) Disturbed homeostasis of lung intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 during sepsis. Am J Pathol 164:1435–1445

    PubMed  CAS  Google Scholar 

  34. Leone M, Boutiere B, Camoin-Jau L, et al (2002) Systemic endothelial activation is greater in septic than in traumatic-hemorrhagic shock but does not correlate with endothelial activation in skin biopsies. Crit Care Med 30:808–814

    PubMed  CAS  Google Scholar 

  35. Reinhart K, Bayer O, Brunkhorst F, Meisner M (2002) Markers of endothelial damage in organ dysfunction and sepsis. Crit Care Med 30(Suppl 5):S302–S312

    PubMed  CAS  Google Scholar 

  36. Xu H, Gonzalo JA, St Pierre Y, et al (1994) Leukocytosis and resistance to septic shock in intercellular adhesion molecule 1-deficient mice. J Exp Med 180:95–109

    PubMed  CAS  Google Scholar 

  37. Cunha FQ, Assreuy J, Moss DW, et al (1994) Differential induction of nitric oxide synthase in various organs of the mouse during endotoxaemia: role of TNF-alpha and IL-1-beta. Immunology 81:211–215

    PubMed  CAS  Google Scholar 

  38. Connelly L, Madhani M, Hobbs AJ (2005) Resistance to endotoxic shock in endothelial nitric-oxide synthase (eNOS) knock-out mice: a pro-inflammatory role for eNOS-derived no in vivo. J Biol Chem 280:10040–10046

    PubMed  CAS  Google Scholar 

  39. Scott JA, Mehta S, Duggan M, Bihari A, McCormack DG (2002) Functional inhibition of constitutive nitric oxide synthase in a rat model of sepsis. Am J Respir Crit Care Med 165:1426–1432

    PubMed  Google Scholar 

  40. Chauhan SD, Seggara G, Vo PA, Macallister RJ, Hobbs AJ, Ahluwalia A (2003) Protection against lipopolysaccharide-induced endothelial dysfunction in resistance and conduit vasculature of iNOS knockout mice. Faseb J 17:773–775

    PubMed  CAS  Google Scholar 

  41. Hollenberg SM, Piotrowski MJ, Parrillo JE (1997) Nitric oxide synthase inhibition reverses arteriolar hyporesponsiveness to endothelin-1 in septic rats. Am J Physiol 272:R969–R974

    PubMed  CAS  Google Scholar 

  42. Wang W, Mitra A, Poole B, et al (2004) Endothelial nitric oxide synthase-deficient mice exhibit increased susceptibility to endotoxin-induced acute renal failure. Am J Physiol Renal Physiol 287:F1044–1048

    PubMed  CAS  Google Scholar 

  43. Radomski MW, Vallance P, Whitley G, Foxwell N, Moncada S (1993) Platelet adhesion to human vascular endothelium is modulated by constitutive and cytokine induced nitric oxide. Cardiovasc Res 27:1380–1382

    PubMed  CAS  Google Scholar 

  44. Cerwinka WH, Cooper D, Krieglstein CF, Feelisch M, Granger DN (2002) Nitric oxide modulates endotoxin-induced platelet-endothelial cell adhesion in intestinal venules. Am J Physiol Heart Circ Physiol 282:H1111–H1117

    PubMed  CAS  Google Scholar 

  45. Kubes P, Suzuki M, Granger DN (1991) Nitric oxide: an endogenous modulator of leukocyte adhesion. Proc Natl Acad Sci USA 88:4651–4655

    PubMed  CAS  Google Scholar 

  46. Mitchell DJ, Yu J, Tyml K (1998) Local L-NAME decreases blood flow and increases leukocyte adhesion via CD18. Am J Physiol 274:H1264–H1268

    PubMed  CAS  Google Scholar 

  47. Yamamoto K, de Waard V, Fearns C, Loskutoff DJ (1998) Tissue distribution and regulation of murine von Willebrand factor gene expression in vivo. Blood 92:2791–2801

    PubMed  CAS  Google Scholar 

  48. Faust SN, Levin M, Harrison OB, et al (2001) Dysfunction of endothelial protein C activation in severe meningococcal sepsis. N Engl J Med 345:408–416

    PubMed  CAS  Google Scholar 

  49. Carrithers M, Tandon S, Canosa S, Michaud M, Graesser D, Madri JA (2005) Enhanced susceptibility to endotoxic shock and impaired STAT3 signaling in CD31-deficient mice. Am J Pathol 166:185–196

    PubMed  CAS  Google Scholar 

  50. Maas M, Stapleton M, Bergom C, Mattson DL, Newman DK, Newman PJ (2005) Endothelial cell PECAM-1 confers protection against endotoxic shock. Am J Physiol Heart Circ Physiol 288:H159–H164

    PubMed  CAS  Google Scholar 

  51. Lopez A, Lorente JA, Steingrub J, et al (2004) Multiple-center, randomized, placebo-controlled, double-blind study of the nitric oxide synthase inhibitor 546C88: effect on survival in patients with septic shock. Crit Care Med 32:21–30

    PubMed  CAS  Google Scholar 

  52. Buwalda M, Ince C (2002) Opening the microcirculation: can vasodilators be useful in sepsis? Intensive Care Med 28:1208–1217

    PubMed  Google Scholar 

  53. Kerlin BA, Yan SB, Isermann BH, et al (2003) Survival advantage associated with heterozygous factor V Leiden mutation in patients with severe sepsis and in mouse endotoxemia. Blood 102:3085–3092

    PubMed  CAS  Google Scholar 

  54. Aird WC (2003) Thrombin paradox redux. Blood 102:3077–3078

    CAS  Google Scholar 

  55. Finigan JH, Dudek SM, Singleton PA, et al (2005) Activated protein C mediates novel lung endothelial barrier enhancement: role of sphingosine 1-phosphate receptor transactivation. J Biol Chem 280:17286–17293

    PubMed  CAS  Google Scholar 

  56. Ten VS, Pinsky DJ (2002) Endothelial response to hypoxia: physiologic adaptation and pathologic dysfunction. Curr Opin Crit Care 8:242–250

    PubMed  Google Scholar 

  57. D’Arcangelo D, Facchiano F, Barlucchi LM, et al (2000) Acidosis inhibits endothelial cell apoptosis and function and induces basic fibroblast growth factor and vascular endothelial growth factor expression. Circ Res 86:312–318

    PubMed  CAS  Google Scholar 

  58. Agullo L, Garcia-Dorado D, Escalona N, et al (2002) Hypoxia and acidosis impair cGMP synthesis in microvascular coronary endothelial cells. Am J Physiol Heart Circ Physiol 283:H917–H925

    PubMed  CAS  Google Scholar 

  59. Barakat A, Lieu D (2003) Differential responsiveness of vascular endothelial cells to different types of fluid mechanical shear stress. Cell Biochem Biophys 38:323–343

    PubMed  CAS  Google Scholar 

  60. Rivers E, Nguyen B, Havstad S, et al (2001) Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 345:1368–1377

    PubMed  CAS  Google Scholar 

  61. Hasday JD, Bannerman D, Sakarya S, et al (2001) Exposure to febrile temperature modifies endothelial cell response to tumor necrosis factor-alpha. J Appl Physiol 90:90–98

    PubMed  CAS  Google Scholar 

  62. Wang L, Xing XP, Holmes A, et al (2005) Activation of the sphingosine kinase-signaling pathway by high glucose mediates the proinflammatory phenotype of endothelial cells. Circ Res 97:891–899

    PubMed  CAS  Google Scholar 

  63. Han J, Mandal AK, Hiebert LM (2005) Endothelial cell injury by high glucose and heparanase is prevented by insulin, heparin and basic fibroblast growth factor. Cardiovasc Diabetol 4:12

    PubMed  Google Scholar 

  64. van den Berghe G, Wouters P, Weekers F, et al (2001) Intensive insulin therapy in the critically ill patients. N Engl J Med 345:1359–1367

    PubMed  Google Scholar 

  65. Panacek EA, Marshall JC, Albertson TE, et al (2004) Efficacy and safety of the monoclonal anti-tumor necrosis factor antibody F(ab’)2 fragment afelimomab in patients with severe sepsis and elevated interleukin-6 levels. Crit Care Med 32:2173–2182

    PubMed  CAS  Google Scholar 

  66. Pober JS (2002) Endothelial activation: intracellular signaling pathways. Arthritis Res 4(suppl 3):S109–S116

    PubMed  Google Scholar 

  67. Opal SM, Fisher CJ Jr, Dhainaut JF, et al (1997) Confirmatory interleukin-1 receptor antagonist trial in severe sepsis: a phase III, randomized, double-blind, placebo-controlled, multicenter trial. The Interleukin-1 Receptor Antagonist Sepsis Investigator Group. Crit Care Med 25:1115–1124

    PubMed  CAS  Google Scholar 

  68. Opal S, Laterre PF, Abraham E, et al (2004) Recombinant human platelet-activating factor acetylhydrolase for treatment of severe sepsis: results of a phase III, multicenter, randomized, double-blind, placebo-controlled, clinical trial. Crit Care Med 32:332–341

    PubMed  CAS  Google Scholar 

  69. Minneci PC, Deans KJ, Banks SM, Eichacker PQ, Natanson C (2004) Should we continue to target the platelet-activating factor pathway in septic patients? Crit Care Med 32:585–588

    PubMed  Google Scholar 

  70. Hudry-Clergeon H, Stengel D, Ninio E, Vilgrain I (2005) Platelet-activating factor increases VE-cadherin tyrosine phosphorylation in mouse endothelial cells and its association with the PtdIns3′-kinase. Faseb J 19:512–520

    PubMed  CAS  Google Scholar 

  71. Zisman DA, Kunkel SL, Strieter RM, et al (1997) MCP-1 protects mice in lethal endotoxemia. J Clin Invest 99:2832–2836

    PubMed  CAS  Google Scholar 

  72. Hong KH, Ryu J, Han KH (2005) Monocyte chemoattractant protein-1-induced angiogenesis is mediated by vascular endothelial growth factor-A. Blood 105:1405–1407

    PubMed  CAS  Google Scholar 

  73. Bernard GR, Vincent JL, Laterre PF, et al (2001) Efficacy and safety of recombinant human activated protein C for severe sepsis. N Engl J Med 344:699–709

    PubMed  CAS  Google Scholar 

  74. Minami T, Sugiyama A, Wu SQ, Abid R, Kodama T, Aird WC (2004) Thrombin and phenotypic modulation of the endothelium. Arterioscler Thromb Vasc Biol 24:41–53

    PubMed  CAS  Google Scholar 

  75. Buras JA, Rice L, Orlow D, et al (2004) Inhibition of C5 or absence of C6 protects from sepsis mortality. Immunobiology 209:629–635

    PubMed  CAS  Google Scholar 

  76. Czermak BJ, Sarma V, Pierson CL, et al (1999) Protective effects of C5a blockade in sepsis. Nat Med 5:788–792

    PubMed  CAS  Google Scholar 

  77. Kim JY, Park JS, Strassheim D, et al (2005) HMGB1 contributes to the development of acute lung injury after hemorrhage. Am J Physiol Lung Cell Mol Physiol 288:L958–965

    PubMed  CAS  Google Scholar 

  78. Yang H, Ochani M, Li J, et al (2004) Reversing established sepsis with antagonists of endogenous high-mobility group box 1. Proc Natl Acad Sci USA 101:296–301

    PubMed  CAS  Google Scholar 

  79. Andersson UG, Tracey KJ (2004) HMGB1, a pro-inflammatory cytokine of clinical interest: introduction. J Intern Med 255:318–319

    PubMed  CAS  Google Scholar 

  80. Guo YL, Colman RW (2005) Two faces of high-molecular-weight kininogen (HK) in angiogenesis: bradykinin turns it on and cleaved HK (HKa) turns it off. J Thromb Haemost 3:670–676

    PubMed  CAS  Google Scholar 

  81. Fein AM, Bernard GR, Criner GJ, et al (1997) Treatment of severe systemic inflammatory response syndrome and sepsis with a novel bradykinin antagonist, deltibant (CP-0127). Results of a randomized, double-blind, placebo-controlled trial. CP-0127 SIRS and Sepsis Study Group. JAMA 277:482–487

    PubMed  CAS  Google Scholar 

  82. Nolan A, Weiden MD, Thurston G, Gold JA (2004)Vascular endothelial growth factor blockade reduces plasma cytokines in a murine model of polymicrobial sepsis. Inflammation 28:271–278

    PubMed  CAS  Google Scholar 

  83. Armour J, Tyml K, Lidington D, Wilson JX (2001) Ascorbate prevents microvascular dysfunction in the skeletal muscle of the septic rat. J Appl Physiol 90:795–803

    PubMed  CAS  Google Scholar 

  84. Heller AR, Groth G, Heller SC, et al (2001) N-acetylcysteine reduces respiratory burst but augments neutrophil phagocytosis in intensive care unit patients. Crit Care Med 29:272–276

    PubMed  CAS  Google Scholar 

  85. Harlan JM, Winn RK (2002) Leukocyte-endothelial interactions: clinical trials of antiadhesion therapy. Crit Care Med 30(suppl 5):S214–S219

    PubMed  CAS  Google Scholar 

  86. Bless NM, Tojo SJ, Kawarai H, et al (1998) Differing patterns of P-selectin expression in lung injury. Am J Pathol 153:1113–1122

    PubMed  CAS  Google Scholar 

  87. Bogen S, Pak J, Garifallou M, Deng X, Muller WA (1994) Monoclonal antibody to murine PECAM-1 (CD31) blocks acute inflammation in vivo. J Exp Med 179:1059–1064

    PubMed  CAS  Google Scholar 

  88. Peng X, Hassoun PM, Sammani S, et al (2004) Protective effects of sphingosine 1-phosphate in murine endotoxin-induced inflammatory lung injury. Am J Respir Crit Care Med 169:1245–1251

    PubMed  Google Scholar 

  89. Seybold J, Thomas D, Witzenrath M, et al (2005) Tumor necrosis factor-alpha-dependent expression of phosphodiesterase 2: role in endothelial hyperpermeability. Blood 105:3569–3576

    PubMed  CAS  Google Scholar 

  90. Szabo C, Southan GJ, Thiemermann C (1994) Beneficial effects and improved survival in rodent models of septic shock with S-methylisothiourea sulfate, a potent and selective inhibitor of inducible nitric oxide synthase. Proc Natl Acad Sci USA 91:12472–12476

    PubMed  CAS  Google Scholar 

  91. Cobb JP, Natanson C, Hoffman WD, et al (1992) N omega-amino-L-arginine, an inhibitor of nitric oxide synthase, raises vascular resistance but increases mortality rates in awake canines challenged with endotoxin. J Exp Med 176:1175–1182

    PubMed  CAS  Google Scholar 

  92. Laubach VE, Shesely EG, Smithies O, Sherman PA (1995) Mice lacking inducible nitric oxide synthase are not resistant to lipopolysaccharide-induced death. Proc Natl Acad Sci USA 92:10688–10692

    PubMed  CAS  Google Scholar 

  93. Choi KB, Wong F, Harlan JM, Chaudhary PM, Hood L, Karsan A (1998) Lipopolysaccharide mediates endothelial apoptosis by a FADD-dependent pathway. J Biol Chem 273:20185–20188

    PubMed  CAS  Google Scholar 

  94. Hotchkiss RS, Tinsley KW, Swanson PE, Karl IE (2002) Endothelial cell apoptosis in sepsis. Crit Care Med 30(Suppl 5):S225–228

    PubMed  Google Scholar 

  95. Kawasaki M, Kuwano K, Hagimoto N, et al (2000) Protection from lethal apoptosis in lipopolysaccharide-induced acute lung injury in mice by a caspase inhibitor. Am J Pathol 157:597–603

    PubMed  CAS  Google Scholar 

  96. Cheng T, Liu D, Griffin JH, et al (2003) Activated protein C blocks p53-mediated apoptosis in ischemic human brain endothelium and is neuroprotective. Nat Med 9:338–342

    PubMed  CAS  Google Scholar 

  97. Kan W, Zhao KS, Jiang Y, et al (2004) Lung, spleen, and kidney are the major places for inducible nitric oxide synthase expression in endotoxic shock: role of p38 mitogen-activated protein kinase in signal transduction of inducible nitric oxide synthase expression. Shock 21:281–287

    PubMed  CAS  Google Scholar 

  98. Badger AM, Bradbeer JN, Votta B, Lee JC, Adams JL, Griswold DE (1996) Pharmacological profile of SB203580, a selective inhibitor of cytokine suppressive binding protein/p38 kinase, in animal models of arthritis, bone resorption, endotoxin shock and immune function. J Pharmacol Exp Ther 279:1453–1461

    PubMed  CAS  Google Scholar 

  99. Branger J, van den Blink B, Weijer S, et al (2002) Anti-inflammatory effects of a p38 mitogen-activated protein kinase inhibitor during human endotoxemia. J Immunol 168:4070–4077

    PubMed  CAS  Google Scholar 

  100. Zingarelli B, Sheehan M, Wong HR (2003) Nuclear factor-kappaB as a therapeutic target in critical care medicine. Crit Care Med 31(suppl 1):S105–S111

    PubMed  CAS  Google Scholar 

  101. Matsuda N, Hattori Y, Jesmin S, Gando S (2005) Nuclear factor-kappaB decoy oligodeoxynucleotides prevent acute lung injury in mice with cecal ligation and puncture-induced sepsis. Mol Pharmacol 67:1018–1025

    PubMed  CAS  Google Scholar 

  102. Gadjeva M, Tomczak MF, Zhang M, et al (2004) A role for NF-kappa B subunits p50 and p65 in the inhibition of lipopolysaccharide-induced shock. J Immunol 173:5786–5793

    PubMed  CAS  Google Scholar 

  103. Dugo L, Collin M, Allen DA, et al (2005) GSK-3beta inhibitors attenuate the organ injury/ dysfunction caused by endotoxemia in the rat. Crit Care Med 33:1903–1912

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Aird, W.C. (2007). The Role of the Endothelium. In: Abraham, E., Singer, M. (eds) Mechanisms of Sepsis-Induced Organ Dysfunction and Recovery. Update in Intensive Care and Emergency Medicine, vol 44. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-30328-6_14

Download citation

  • DOI: https://doi.org/10.1007/3-540-30328-6_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-30157-8

  • Online ISBN: 978-3-540-30328-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics