Skip to main content

The Neutrophil in the Pathogenesis of Multiple Organ Dysfunction Syndrome

  • Conference paper
Mechanisms of Sepsis-Induced Organ Dysfunction and Recovery

Part of the book series: Update in Intensive Care and Emergency Medicine ((UICMSOFT,volume 44))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Segal AW (2005) How neutrophils kill microbes. Annu Rev Immunol 23:197–223

    Article  PubMed  CAS  Google Scholar 

  2. Kobayashi SD, Voyich JM, DeLeo FR (2003) Regulation of the neutrophil-mediated inflammatory response to infection. Microbes Infect 5:1337–1344

    Article  PubMed  CAS  Google Scholar 

  3. Zlotnik A, Yoshie O (2000) Chemokines: a new classification system and their role in immunity. Immunity 12:121–127

    Article  PubMed  CAS  Google Scholar 

  4. DeLeo FR, Renee J, McCormick S, et al (1998) Neutrophils exposed to bacterial lipopolysaccharide upregulate NADPH oxidase assembly. J Clin Invest 101:455–463

    Article  PubMed  CAS  Google Scholar 

  5. Witko-Sarsat V, Rieu P, Scamps-Latscha B, Lesavre P, Halbwachs-Mecarelli L (2000) Neutrophils: molecules, functions and pathophysiological aspects. Lab Invest 80:617–653

    PubMed  CAS  Google Scholar 

  6. Ley K (1996) Molecular mechanisms of leukocyte recruitment in the inflammatory process. Cardiovasc Res 32:733–742

    Article  PubMed  CAS  Google Scholar 

  7. McEver RP (1994) Selectins. Curr Opin Immunol 6:75–84

    Article  PubMed  CAS  Google Scholar 

  8. Varki A (1994) Selectin ligands. Proc Natl Acad Sci U S A 91:7390–7397

    Article  PubMed  CAS  Google Scholar 

  9. Hynes RO (1992) Integrins: versatility, modulation, and signaling in cell adhesion. Cell 69:11–25

    Article  PubMed  CAS  Google Scholar 

  10. Ley K, Tedder TF (1995) Leukocyte interactions with vascular endothelium. New insights into selectin-mediated attachment and rolling. J Immunol 155:525–528

    PubMed  CAS  Google Scholar 

  11. Walcheck B, Kahn J, Fisher JM, et al (1996) Neutrophil rolling altered by inhibition of L-selectin shedding in vitro. Nature 380:720–723

    Article  PubMed  CAS  Google Scholar 

  12. Bargatze RF, Kurk S, Butcher EC, Jutila MA (1994) Neutrophils roll on adherent neutrophils bound to cytokine-induced endothelial cells via L-selectin on the rolling cells. J Exp Med 180:1785–1792

    Article  PubMed  CAS  Google Scholar 

  13. Ley K, Bullard DC, Arbones ML, et al (1995) Sequential contribution of L-and P-selectin to leukocyte rolling in vivo. J Exp Med 181:669–675

    Article  PubMed  CAS  Google Scholar 

  14. Nolte D, Schmid P, Jager U, et al (1994) Leukocyte rolling in venules of striated muscle and skin is mediated by P-selectin, not by L-selectin. Am J Physiol 267:H1637–H1642

    PubMed  CAS  Google Scholar 

  15. Norman KE, Moore KL, McEver RP, Ley K (1995) Leukocyte rolling in vivo is mediated by P-selectin glycoprotein ligand-1. Blood 86:4417–4421

    PubMed  CAS  Google Scholar 

  16. Labow MA, Norton CR, Rumberger JM, et al (1994) Characterization of E-selectin-deficient mice: demonstration of overlapping function of the endothelial selectins. Immunity 1:709–720

    Article  PubMed  CAS  Google Scholar 

  17. Waddell TK, Fialkow L, Chan CK, Kishimoto TK, Downey GP (1995) Signaling functions of L-selectin. Enhancement of tyrosine phosphorylation and activation of MAP kinase. J Biol Chem 270:15403–15411

    Article  PubMed  CAS  Google Scholar 

  18. Smolen JE, Petersen TK, Koch C, et al (2000) L-selectin signaling of neutrophil adhesion and degranulation involves p38 mitogen-activated protein kinase. J Biol Chem 275:15876–15884

    Article  PubMed  CAS  Google Scholar 

  19. Anderson DC, Springer TA (1987) Leukocyte adhesion deficiency: an inherited defect in the Mac-1, LFA-1, and p150,95 glycoproteins. Annu Rev Med 38:175–194

    Article  PubMed  CAS  Google Scholar 

  20. Wilson RW, Ballantyne CM, Smith CW, et al (1993) Gene targeting yields a CD18-mutant mouse for study of inflammation. J Immunol 151:1571–1578

    PubMed  CAS  Google Scholar 

  21. Hentzen ER, Neelamegham S, Kansas GS, et al (2000) Sequential binding of CD11a/CD18 and CD11b/CD18 defines neutrophil capture and stable adhesion to intercellular adhesion molecule-1. Blood 95:911–920

    PubMed  CAS  Google Scholar 

  22. Rochon YP, Kavanagh TJ, Harlan JM (2000) Analysis of integrin (CD11b/CD18) movement during neutrophil adhesion and migration on endothelial cells. J Microsc 197 (Pt 1):15–24

    Article  PubMed  CAS  Google Scholar 

  23. Del MA, Zanetti A, Corada M, et al (1996) Polymorphonuclear leukocyte adhesion triggers the disorganization of endothelial cell-to-cell adherens junctions. J Cell Biol 135:497–510

    Article  Google Scholar 

  24. Feng D, Nagy JA, Pyne K, Dvorak HF, Dvorak AM (1998) Neutrophils emigrate from venules by a transendothelial cell pathway in response to FMLP. J Exp Med 187:903–915

    Article  PubMed  CAS  Google Scholar 

  25. Chosay JG, Fisher MA, Farhood A, Ready KA, Dunn CJ, Jaeschke H (1998) Role of PECAM-1 (CD31) inneutrophil transmigration in murine models of liver and peritoneal inflammation. Am J Physiol 274:G776–G782

    PubMed  CAS  Google Scholar 

  26. Chavakis T, Keiper T, Matz-Westphal R, et al (2004) The junctional adhesion molecule-C promotes neutrophil transendothelial migrationin vitro and in vivo. J Biol Chem 279:55602–55608

    Article  PubMed  CAS  Google Scholar 

  27. Kurt-Jones EA, Mandell L, Whitney C, et al (2002) Role of toll-like receptor 2 (TLR2) in neutrophil activation: GM-CSF enhances TLR2 expression and TLR2-mediated interleukin 8 responses in neutrophils. Blood 100:1860–1868

    PubMed  CAS  Google Scholar 

  28. Brinkmann V, Reichard U, Goosmann C, et al (2004) Neutrophil extracellular traps kill bacteria. Science 303:1532–1535

    Article  PubMed  CAS  Google Scholar 

  29. Lee WL, Harrison RE, Grinstein S (2003) Phagocytosis by neutrophils. Microbes Infect 5:1299–1306

    Article  PubMed  CAS  Google Scholar 

  30. Stendahl O, Krause KH, Krischer J, et al (1994) Redistribution of intracellular Ca2+ stores during phagocytosis in human neutrophils. Science 265:1439–1441

    Article  PubMed  CAS  Google Scholar 

  31. Lundqvist-Gustafsson H, Gustafsson M, Dahlgren C (2000) Dynamic ca(2+)changes in neutrophil phagosomes A source for intracellular ca(2+)during phagolysosome formation? Cell Calcium 27:353–362

    Article  PubMed  CAS  Google Scholar 

  32. Peters C, Mayer A (1998) Ca2+/calmodulin signals the completion of docking and triggers a late step of vacuole fusion. Nature 396:575–580

    Article  PubMed  CAS  Google Scholar 

  33. Korchak HM, Rossi MW, Kilpatrick LE (1998) Selective role for beta-protein kinase C in signaling for O-2 generation but not degranulation or adherence in differentiated HL60 cells. J Biol Chem 273:27292–27299

    Article  PubMed  CAS  Google Scholar 

  34. Mohn H, Le C, V, Fischer S, Maridonneau-Parini I (1995) The src-family protein-tyrosine kinase p59hck is located on the secretory granules in human neutrophils and translocates towards the phagosome during cell activation. Biochem J 309 ( Pt 2):657–665

    PubMed  Google Scholar 

  35. Shao D, Segal AW, Dekker LV (2003) Lipid rafts determine efficiency of NADPH oxidase activation in neutrophils. FEBS Lett 550:101–106

    Article  PubMed  CAS  Google Scholar 

  36. Burg ND, Pillinger MH (2001) Theneutrophil: function and regulation in innate and humoral immunity. Clin Immunol 99:7–17

    Article  PubMed  CAS  Google Scholar 

  37. Ishikawa F, Miyazaki S (2005) New biodefense strategies by neutrophils. Arch Immunol Ther Exp (Warsz) 53:226–233

    CAS  Google Scholar 

  38. Kimura Y, Yokoi-Hayashi K (1996) Polymorphonuclear leukocyte lysosomal proteases, cathepsins B and D affect the fibrinolytic system in human umbilical vein endothelial cells. Biochim Biophys Acta 1310:1–4

    Article  PubMed  Google Scholar 

  39. Cowburn AS, Deighton J, Walmsley SR, Chilvers ER (2004) The survival effect of TNF-alpha in human neutrophils is mediated via NF-kappa B-dependent IL-8 release. Eur J Immunol 34:1733–1743

    Article  PubMed  CAS  Google Scholar 

  40. Wang K, Scheel-Toellner D, Wong SH, et al (2003) Inhibition of neutrophil apoptosis by type 1 IFN depends on cross-talk between phosphoinositol 3-kinase, protein kinase C-delta, and NF-kappa B signaling pathways. J Immunol 171:1035–1041

    PubMed  CAS  Google Scholar 

  41. Fadeel B, Kagan VE (2003) Apoptosis and macrophage clearance of neutrophils: regulation by reactive oxygen species. Redox Rep 8:143–150

    Article  PubMed  CAS  Google Scholar 

  42. Haslett C (1992) Resolution of acute inflammation and the role of apoptosis in the tissue fate of granulocytes. Clin Sci (Lond) 83:639–648

    PubMed  CAS  Google Scholar 

  43. Ashkenazi A, Dixit VM (1998) Death receptors: signaling and modulation. Science 281:1305–1308

    Article  PubMed  CAS  Google Scholar 

  44. Akgul C, Edwards SW (2003) Regulation of neutrophil apoptosis via death receptors. Cell Mol Life Sci 60:2402–2408

    Article  PubMed  CAS  Google Scholar 

  45. Scheel-Toellner D, Wang K, Assi LK, et al (2004) Clustering of death receptors in lipid rafts initiates neutrophil spontaneous apoptosis. Biochem Soc Trans 32:679–681

    Article  PubMed  CAS  Google Scholar 

  46. Ward C, Chilvers ER, Lawson MF, et al (1999) NF-kappaB activation is a critical regulator of human granulocyte apoptosis in vitro. J Biol Chem 274:4309–4318

    Article  PubMed  CAS  Google Scholar 

  47. Weinmann P, Gaehtgens P, Walzog B (1999) Bcl-Xl-and Bax-alpha-mediated regulation of apoptosis of human neutrophils via caspase-3. Blood 93:3106–3115

    PubMed  CAS  Google Scholar 

  48. Li P, Nijhawan D, Budihardjo I, et al (1997) Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91:479–489

    Article  PubMed  CAS  Google Scholar 

  49. Moulding DA, Quayle JA, Hart CA, Edwards SW (1998) Mcl-1 expression in human neutrophils: regulation by cytokines and correlation with cell survival. Blood 92:2495–2502

    PubMed  CAS  Google Scholar 

  50. Akgul C, Moulding DA, Edwards SW (2001) Molecular control of neutrophil apoptosis. FEBS Lett 487:318–322

    Article  PubMed  CAS  Google Scholar 

  51. Green DR, Reed JC (1998) Mitochondria and apoptosis. Science 281:1309–1312

    Article  PubMed  CAS  Google Scholar 

  52. Liles WC, Kiener PA, Ledbetter JA, Aruffo A, Klebanoff SJ (1996) Differential expression of Fas (CD95) and Fas ligand on normal human phagocytes: Implications for the regulation of apoptosis in neutrophils. J Exp Med 184:429–440

    Article  PubMed  CAS  Google Scholar 

  53. Liles WC, Thomsen AR, O’Mahony DS, Klebanoff SJ (2001) Stimulation of human neutrophils and monocytes by staphylococcal phenol-soluble modulin. J Leukoc Biol 70:96–102

    PubMed  CAS  Google Scholar 

  54. Lotz S, Aga E, Wilde I, et al (2004) Highly purified lipoteichoic acid activates neutrophil granulocytes and delays their spontaneous apoptosis via CD14 and TLR2. J Leukoc Biol 75:467–477

    Article  PubMed  CAS  Google Scholar 

  55. Liu J, Akahoshi T, Sasahana T, et al (1999) Inhibition of neutrophil apoptosis by verotoxin 2 derived from Escherichia coli O157:H7. Infect Immun 67:6203–6205

    PubMed  CAS  Google Scholar 

  56. Kim JS, Kim JM, Jung HC, Song IS, Kim CY (2001) Inhibition of apoptosis in human neutrophils by Helicobacter pylori water-soluble surface proteins. Scand J Gastroenterol 36:589–600

    Article  PubMed  CAS  Google Scholar 

  57. Stehle HW, Leblebicioglu B, Walters JD (2001) Short-chain carboxylic acids produced by gram-negative anaerobic bacteria can accelerate or delay polymorphonuclear leukocyte apoptosis in vitro. J Periodontol 72:1059–1063

    Article  PubMed  CAS  Google Scholar 

  58. Takeda K, Akira S (2004) Microbial recognition by Toll-like receptors. J Dermatol Sci 34:73–82

    Article  PubMed  CAS  Google Scholar 

  59. Sabroe I, Prince LR, Jones EC, et al (2003) Selective roles for Toll-like receptor (TLR)2 and TLR4 in the regulation of neutrophil activation and life span. J Immunol 170:5268–5275

    PubMed  CAS  Google Scholar 

  60. Mica L, Harter L, Trentz O, Keel M (2004) Endotoxin reduces CD95-induced neutrophil apoptosis by cIAP-2-mediated caspase-3 degradation. J Am Coll Surg 199:595–602

    Article  PubMed  Google Scholar 

  61. Francois S, El BJ, Dang PM, Pedruzzi E, Gougerot-Pocidalo MA, Elbim C (2005) Inhibition of neutrophil apoptosis by TLR agonists in whole blood: involvement of the phosphoinositide 3-kinase/Akt and NF-kappaB signaling pathways, leading to increased levels of Mcl-1, A1, and phosphorylated Bad. J Immunol 174:3633–3642

    PubMed  CAS  Google Scholar 

  62. Ward C, Walker A, Dransfield I, Haslett C, Rossi AG (2004) Regulation of granulocyte apoptosis by NF-kappaB. Biochem Soc Trans 32:465–467

    Article  PubMed  CAS  Google Scholar 

  63. Sakamoto E, Hato F, Kato T, et al (2005) Type I and type II interferons delay human neutrophil apoptosis via activation of STAT3 and up-regulation of cellular inhibitor of apoptosis 2. J Leukoc Biol 78:301–309

    Article  PubMed  CAS  Google Scholar 

  64. Derouet M, Thomas L, Cross A, Moots RJ, Edwards SW (2004) Granulocyte macrophage colony-stimulating factor signaling and proteasome inhibition delay neutrophil apoptosis by increasing the stability of Mcl-1. J Biol Chem 279:26915–26921

    Article  PubMed  CAS  Google Scholar 

  65. Watson RW, Rotstein OD, Parodo J, Bitar R, Marshall JC (1998) The IL-1 beta-converting enzyme (caspase-1) inhibits apoptosis of inflammatory neutrophils through activation of IL-1 beta. J Immunol 161:957–962

    PubMed  CAS  Google Scholar 

  66. Cowburn AS, Cadwallader KA, Reed BJ, Farahi N, Chilvers ER (2002) Role of PI3-kinasedependent Bad phosphorylation and altered transcription in cytokine-mediated neutrophil survival. Blood 100:2607–2616

    Article  PubMed  CAS  Google Scholar 

  67. Downward J (1999) How BAD phosphorylation is good for survival. Nat Cell Biol 1:E33–E35

    Article  PubMed  CAS  Google Scholar 

  68. Maianski NA, Mul FP, van Buul JD, Roos D, Kuijpers TW (2002) Granulocyte colony-stimulating factor inhibits the mitochondria-dependent activation of caspase-3 in neutrophils. Blood 99:672–679

    Article  PubMed  CAS  Google Scholar 

  69. Hofman P (2004) Molecular regulation of neutrophil apoptosis and potential targets for therapeutic strategy against the inflammatory process. Curr Drug Targets Inflamm Allergy 3:1–9

    Article  PubMed  CAS  Google Scholar 

  70. Jia SH, Li Y, Parodo J, et al (2004) Pre-B cell colony-enhancing factor inhibits neutrophil apoptosis in experimental inflammation and clinical sepsis. J Clin Invest 113:1318–1327

    Article  PubMed  CAS  Google Scholar 

  71. Lee E, Lindo T, Jackson N, et al (1999) Reversal of human neutrophil survival by leukotriene B(4) receptor blockade and 5-lipoxygenase and 5-lipoxygenase activating protein inhibitors. Am J Respir Crit Care Med 160:2079–2085

    PubMed  CAS  Google Scholar 

  72. van den Berg JM, Weyer S, Weening JJ, Roos D, Kuijpers TW (2001) Divergent effects of tumor necrosis factor alpha on apoptosis of human neutrophils. J Leukoc Biol 69:467–473

    PubMed  Google Scholar 

  73. Tennenberg SD, Finkenauer R, Wang T (2002) Endothelium down-regulates Fas, TNF, and TRAIL-induced neutrophil apoptosis. Surg Infect (Larchmt) 3:351–357

    Article  Google Scholar 

  74. Watson RW, O’Neill A, Brannigen AE, et al (1999) Regulation of Fas antibody induced neutrophil apoptosis is both caspase and mitochondrial dependent. FEBS Lett 453:67–71

    Article  PubMed  CAS  Google Scholar 

  75. Taneja R, Parodo J, Jia SH, Kapus A, Rotstein OD, Marshall JC (2004) Delayed neutrophil apoptosis in sepsis is associated with maintenance of mitochondrial transmembrane potential and reduced caspase-9 activity. Crit Care Med 32:1460–1469

    Article  PubMed  CAS  Google Scholar 

  76. Watson RW, Redmond HP, Wang JH, Bouchier-Hayes D (1996) Bacterial ingestion, tumor necrosis factor-alpha, and heat induce programmed cell death in activated neutrophils. Shock 5:47–51

    Article  PubMed  CAS  Google Scholar 

  77. Ward C, Dransfield I, Chilvers ER, Haslett C, Rossi AG (1999) Pharmacological manipulation of granulocyte apoptosis: potential therapeutic targets. Trends Pharmacol Sci 20:503–509

    Article  PubMed  CAS  Google Scholar 

  78. Watson RW, Redmond HP, Wang JH, Condron C, Bouchier-Hayes D (1996) Neutrophils undergo apoptosis following ingestion of Escherichia coli. J Immunol 156:3986–3992

    PubMed  CAS  Google Scholar 

  79. Schettini J, Salamone G, Trevani A, et al (2002) Stimulation of neutrophil apoptosis by immobilized IgA. J Leukoc Biol 72:685–691

    PubMed  CAS  Google Scholar 

  80. Coxon A, Rieu P, Barkalow FJ, et al (1996) A novel role for the beta 2 integrin CD11b/CD18 in neutrophil apoptosis: a homeostatic mechanism in inflammation. Immunity 5:653–666

    Article  PubMed  Google Scholar 

  81. Hampton MB, Vissers MC, Keenan JI, Winterbourn CC (2002) Oxidant-mediated phosphatidylserine exposure and macrophage uptake of activated neutrophils: possible impairment in chronic granulomatous disease. J Leukoc Biol 71:775–781

    PubMed  CAS  Google Scholar 

  82. Kobayashi SD, Braughton KR, Whitney AR, et al (2003) Bacterial pathogens modulate an apoptosis differentiation program in human neutrophils. Proc Natl Acad Sci U S A 100:10948–10953

    Article  PubMed  CAS  Google Scholar 

  83. Kobayashi SD, Voyich JM, Braughton KR, et al (2004) Gene expression profiling provides insight into the pathophysiology of chronic granulomatous disease. J Immunol 172:636–643

    PubMed  CAS  Google Scholar 

  84. Yamamoto A, Taniuchi S, Tsuji S, Hasui M, Kobayashi Y (2002) Role of reactive oxygen species in neutrophil apoptosis following ingestion of heat-killed Staphylococcus aureus. Clin Exp Immunol 129:479–484

    Article  PubMed  CAS  Google Scholar 

  85. Wehrle-Haller B, Imhof BA (2003) Integrin-dependent pathologies. J Pathol 200:481–487

    Article  PubMed  CAS  Google Scholar 

  86. Zhang B, Hirahashi J, Cullere X, Mayadas TN (2003) Elucidation of molecular events leading to neutrophil apoptosis following phagocytosis: cross-talk between caspase 8, reactive oxygen species, and MAPK/ERK activation. J Biol Chem 278:28443–28454

    Article  PubMed  CAS  Google Scholar 

  87. Kobayashi SD, Voyich JM, Buhl CL, Stahl RM, DeLeo FR (2002) Global changes in gene expression by human polymorphonuclear leukocytes during receptor-mediated phagocytosis: cell fate is regulated at the level of gene expression. Proc Natl Acad Sci U S A 99:6901–6906

    Article  PubMed  CAS  Google Scholar 

  88. Vandivier RW, Fadok VA, Hoffmann PR, et al (2002) Elastase-mediated phosphatidylserine receptor cleavage impairs apoptotic cell clearance in cystic fibrosis and bronchiectasis. J Clin Invest 109:661–670

    Article  PubMed  CAS  Google Scholar 

  89. Teder P, Vandivier RW, Jiang D, et al (2002) Resolution of lung inflammation by CD44. Science 296:155–158

    Article  PubMed  CAS  Google Scholar 

  90. Rowe SJ, Allen L, Ridger VC, Hellewell PG, Whyte MK (2002) Caspase-1-deficient mice have delayed neutrophil apoptosis and a prolonged inflammatory response to lipopolysaccharide-induced acute lung injury. J Immunol 169:6401–6407

    PubMed  CAS  Google Scholar 

  91. Segal BH, Kuhns DB, Ding L, Gallin JI, Holland SM (2002) Thioglycollate peritonitis in mice lacking C5, 5-lipoxygenase, or p47(phox): complement, leukotrienes, and reactive oxidants in acute inflammation. J Leukoc Biol 71:410–416

    PubMed  CAS  Google Scholar 

  92. Matute-Bello G, Liles WC, Radella F, et al (1997) Neutrophil apoptosis in the acute respiratory distress syndrome. Am J Respir Crit Care Med 156:1969–1977

    PubMed  CAS  Google Scholar 

  93. Abraham E (2003) Neutrophils and acute lung injury. Crit Care Med 31:S195–S199

    Article  PubMed  Google Scholar 

  94. Ho JS, Buchweitz JP, Roth RA, Ganey PE (1996) Identification of factors from rat neutrophils responsible for cytotoxicity to isolated hepatocytes. J Leukoc Biol 59:716–724

    PubMed  CAS  Google Scholar 

  95. Kubes P, Hunter J, Granger DN (1992) Ischemia/reperfusion-induced feline intestinal dysfunction: importance of granulocyte recruitment. Gastroenterology 103:807–812

    PubMed  CAS  Google Scholar 

  96. Lowell CA, Berton G (1998) Resistance to endotoxic shock and reduced neutrophilmigration in mice deficient for the Src-family kinases Hck and Fgr. Proc Natl Acad Sci U S A 95:7580–7584

    Article  PubMed  CAS  Google Scholar 

  97. Steinberg KP, Milberg JA, Martin TR, Maunder RJ, Cockrill BA, Hudson LD(1994) Evolution of bronchoalveolar cell populations in the adult respiratory distress syndrome. Am J Respir Crit Care Med 150:113–122

    PubMed  CAS  Google Scholar 

  98. Goris RJ, te Boekhorst TP, Nuytinck JK, Gimbrere JS (1985) Multiple-organ failure. Generalized autodestructive inflammation? Arch Surg 120:1109–1115

    PubMed  CAS  Google Scholar 

  99. Jimenez MF, Watson RW, Parodo J, et al (1997) Dysregulated expression of neutrophil apoptosis in the systemic inflammatory response syndrome. Arch Surg 132:1263–1269

    PubMed  CAS  Google Scholar 

  100. Keel M, Ungethum U, Steckholzer U, et al (1997) Interleukin-10 counterregulates proinflammatory cytokine-induced inhibition of neutrophil apoptosis during severe sepsis. Blood 90:3356–3363

    PubMed  CAS  Google Scholar 

  101. Chitnis D, Dickerson C, Munster AM, Winchurch RA (1996) Inhibition of apoptosis in polymorphonuclear neutrophils from burn patients. J Leukoc Biol 59:835–839

    PubMed  CAS  Google Scholar 

  102. Ertel W, Keel M, Infanger M, Ungethum U, Steckholzer U, Trentz O (1998) Circulating mediators in serum of injured patients with septic complications inhibit neutrophil apoptosis through up-regulation of protein-tyrosine phosphorylation. J Trauma 44:767–775

    Article  PubMed  CAS  Google Scholar 

  103. Sookhai S, Wang JJ, McCourt M, Kirwan W, Bouchier-Hayes D, Redmond HP (2002) A novel therapeutic strategy for attenuating neutrophil-mediated lung injury in vivo. Ann Surg 235:285–291

    Article  PubMed  Google Scholar 

  104. Morgan MD, Harper L, Lu X, Nash G, Williams J, Savage CO (2005) Can neutrophils be manipulated in vivo? Rheumatology (Oxford) 44:597–601

    Article  PubMed  CAS  Google Scholar 

  105. Onai Y, Suzuki J, Nishiwaki Y, et al (2003) Blockade of cell adhesion by a small molecule selectin antagonist attenuates myocardial ischemia/reperfusion injury. Eur J Pharmacol 481:217–225

    Article  PubMed  CAS  Google Scholar 

  106. Harper L, Nuttall SL, Martin U, Savage CO (2002) Adjuvant treatment of patients with antineutrophil cytoplasmic antibody-associated vasculitis with vitamins E and C reduces superoxide production by neutrophils. Rheumatology (Oxford) 41:274–278

    Article  PubMed  CAS  Google Scholar 

  107. Goh J, Godson C, Brady HR, Macmathuna P (2003) Lipoxins: pro-resolution lipid mediators in intestinal inflammation. Gastroenterology 124:1043–1054

    Article  PubMed  CAS  Google Scholar 

  108. Perretti M, Flower RJ (2004) Annexin 1 and the biology of the neutrophil. J Leukoc Biol 76:25–29

    Article  PubMed  CAS  Google Scholar 

  109. Gilroy DW, Colville-Nash PR, McMaster S, Sawatzky DA, Willoughby DA, Lawrence T (2003) Inducible cyclooxygenase-derived 15-deoxy(Delta)12-14PGJ2 brings about acute inflammatory resolution in rat pleurisy by inducing neutrophil and macrophage apoptosis. FASEB J 17:2269–2271

    PubMed  CAS  Google Scholar 

  110. Mitchell S, Thomas G, Harvey K, et al (2002) Lipoxins, aspirin-triggered epi-lipoxins, lipoxin stable analogues, and the resolution of inflammation: stimulation of macrophage phagocytosis of apoptotic neutrophils in vivo. J Am Soc Nephrol 13:2497–2507

    Article  PubMed  CAS  Google Scholar 

  111. Marshall JC (2005) Neutrophils in the pathogenesis of sepsis. Crit Care Med 33:S502–S505

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Malam, Z., Marshall, J.C. (2007). The Neutrophil in the Pathogenesis of Multiple Organ Dysfunction Syndrome. In: Abraham, E., Singer, M. (eds) Mechanisms of Sepsis-Induced Organ Dysfunction and Recovery. Update in Intensive Care and Emergency Medicine, vol 44. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-30328-6_12

Download citation

  • DOI: https://doi.org/10.1007/3-540-30328-6_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-30157-8

  • Online ISBN: 978-3-540-30328-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics