Skip to main content

Bacterial Surface Layer Proteins: a Simple but Versatile Biological Self-assembly System in Nature

  • Chapter
Nanotechnology: Science and Computation

Part of the book series: Natural Computing Series ((NCS))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L.A. Amos, R. Henderson, and P.N.T. Unwin. Three-dimensional structure determination by electron microscopy of two-dimensional crystals. Prog. Biophys. Mol. Biol., 39:183–231, 1982.

    Article  Google Scholar 

  2. W. Baumeister and H. Engelhardt. Three-dimensional structure of bacterial surface layers. In J.R. Harris and R.W. Horne, editors, Electron Microscopy of Protein, volume 6, pages 109–154. Academic Press, London, 1987.

    Google Scholar 

  3. T.J. Beveridge and L.L. Graham. Surface layers of bacteria. MicroBiol. Rev., 55:684–705, 1991.

    Google Scholar 

  4. P.C. Gufler, D. Pum, U.B. Sleytr, and B. Schuster. Highly robust lipid membranes on crystalline S-layer supports investigated by electrochemical impedance spectroscopy. Biochim. Biophys. Acta, 1661:154–165, 2004.

    Article  Google Scholar 

  5. E.S. Györvary, B. Wetzer, U.B. Sleytr, A. Sinner, A. Offenhäuser, and W. Knoll. Lateral diffusion of lipids in silane-, dextrane-and S-layer protein-supported mono-and bilayers. Langmuir, 15:1337–1347, 1999.

    Article  Google Scholar 

  6. E.S. Györvary, A. O’Riordan, A.J. Quinn, G. Redmond, D. Pum, and U.B. Sleytr. Biomimetic nanostructure fabrication: nonlithographic lateral patterning and self-assembly of functional bacterial S-layers at silicon supports. Nano Letters, 3:315–319, 2003.

    Article  Google Scholar 

  7. E.S. Györvary, O. Stein, D. Pum, and U.B. Sleytr. Self-assembly and recrystallization of bacterial S-layer proteins at silicon supports imaged in real time by atomic force microscopy. J. Microsc., 212:300–306, 2003.

    Article  MathSciNet  Google Scholar 

  8. W.F. Harris and L.E. Scriven. Function of dislocations in cell walls and membranes. Nature, 228:827–829, 1970.

    Article  Google Scholar 

  9. W.F. Harris and L.E. Scriven. Intrinsic disclinations as dislocation sources and sinks in surface crystals. J. Appl. Phys., 42:3309–3312, 1971.

    Article  Google Scholar 

  10. S.C. Holt and E.R. Leadbetter. Comparative ultrastructure of selected aerobic spore forming bacteria: a freeze-etching study. Bacteriol Rev., 33:346–378, 1969.

    Google Scholar 

  11. S. Hovmöller, A. Sjögren, and D.N. Wang. The structure of crystalline bacterial surface layers. Prog. Biophys. Mol. Biol., 51:131–163, 1988.

    Article  Google Scholar 

  12. C. Huber, N. Ilk, D. Rünzler, E.M. Egelseer, S. Weigert, U.B. Sleytr, and M. Sára. The three S-layer-like homology motifs of the S-layer protein SbpA of Bacillus sphaericus CCM 2177 are not sufficient for binding to the pyruvylated secondary cell wall polymer. Mol. Microbiol., 55:197–205, 2005.

    Article  Google Scholar 

  13. N. Ilk, S. Küpcü, G. Moncayo, S. Klimt, R.C. Ecker, R. Hofer-Warbinek, E.M. Egelseer, U.B. Sleytr, and M. Sára. A functional chimeric S-layer/enhanced green fluorescent protein to follow the uptake of S-layer-coated liposomes into eukaryotic cells. Biochem. J., 379:441–448, 2004.

    Article  Google Scholar 

  14. N. Ilk, C. Völlenkle, E.M. Egelseer, A. Breitwieser, U.B. Sleytr, and M. Sára. Molecular characterization of the S-layer gene, sbpA, of Bacillus sphaericus CCM 2177 and production of a functional S-layer fusion protein with the ability to recrystallize in a defined orientation while presenting the fused allergen. Appl. Environ. Microbiol., 68:3251–3260, 2002.

    Article  Google Scholar 

  15. R. Jaenicke, R. Welsch, M. Sára, and U.B. Sleytr. Stability and self-assembly of the S-layer protein of the cell wall of Bacillus stearothermophilus. Biol. Chem. Hoppe-Seyler, 366:663–670, 1985.

    Google Scholar 

  16. S. Küpcü, M. Sára, and U.B. Sleytr. Liposomes coated with crystalline bacterial cell surface protein (S-layers) as immobilization structures for macromolecules. Biochim. Biophys. Acta, 1235:263–269, 1995.

    Article  Google Scholar 

  17. C. Mader, C. Huber, D. Moll, U.B. Sleytr, and M. Sára. Interaction of the crystalline bacterial cell surface layer protein SbsB and the secondary cell wall polymer of Geobacillus stearothermophilus PV72 assessed by real-time surface plasmon resonance biosensor technology. J. Bacteriol., 186:1758–1768, 2004.

    Article  Google Scholar 

  18. C. Mader, S. Küpcü, M. Sára, and U.B. Sleytr. Stabilizing effect of an S-layer on liposomes towards thermal or mechanical stress. Biochim. Biophys. Acta, 1418:106–116, 1999.

    Article  Google Scholar 

  19. C. Mader, S. Küpcü, U.B. Sleytr, and M. Sára. S-layer-coated liposomes as a versatile system for entrapping and binding target molecules. Biochim. Biophys. Acta, 1463:142–150, 2000.

    Article  Google Scholar 

  20. P. Messner, D. Pum, M. Sára, K. Stetter, and U.B. Sleytr. Ultrastructure of the cell envelope of the archaebacteria Thermoproteus tenax and Thermoproteus neutrophilus. J. Bacteriol., 166:1046–1054, 1986.

    Google Scholar 

  21. P. Messner, D. Pum, and U.B. Sleytr. Characterization of the ultrastructure and the self-assembly of the surface layer of Bacillus stearothermophilus NRS 2004/3a. J. Ultrastruct. Mol. Struct. Res., 97:73–88, 1986.

    Article  Google Scholar 

  22. D. Moll, C. Huber, B. Schlegel, D. Pum, U.B. Sleytr, and M. Sára. S-layerstreptavidin fusion proteins as template for nanopatterned molecular arrays. Proc. Natl. Acad. Sci. USA, 99:14646–14651, 2002.

    Article  Google Scholar 

  23. F.R.N. Nabarro and W.F. Harris. Presence and function of disclinations in surface coats of unicellular organisms. Nature, 232:423, 1971.

    Article  Google Scholar 

  24. M. Pleschberger, A. Neubauer, E.M. Egelseer, S. Weigert, B. Lindner, U.B. Sleytr, S. Muyldermans, and M. Sára. Generation of a functional monomolecular protein lattice consisting of an S-layer fusion protein comprising the variable domain of a camel heavy chain antibody. Bioconj. Chem., 14:440–448, 2003.

    Article  Google Scholar 

  25. M. Pleschberger, D. Saerens, S. Weigert, U.B. Sleytr, S. Muyldermans, M. Sára, and E.M. Egelseer. An S-layer heavy chain camel antibody fusion protein for generation of a nanopatterned sensing layer to detect the prostate-specific antigen by surface plasmon resonance technology. Bioconj. Chem., 15:664–671, 2004.

    Article  Google Scholar 

  26. K.L. Prime and G.M. Whitesides. Self-assembled organic monolayers: model systems for studying adsorption of proteins at surfaces. Science, 252:1164–1167, 1991.

    Google Scholar 

  27. D. Pum, P. Messner, and U.B. Sleytr. Role of the S-layer in morphogenesis and cell division of the archaebacterium Methanocorpusculum sinense. J. Bacteriol., 173:6865–6873, 1991.

    Google Scholar 

  28. D. Pum and U.B. Sleytr. Large-scale reconstruction of crystalline bacterial surface layer proteins at the air-water interface and on lipids. Thin Solid Films, 244:882–886, 1994.

    Article  Google Scholar 

  29. D. Pum, G. Stangl, C. Sponer, W. Fallmann, and U.B. Sleytr. Deep UV patterning of monolayers of crystalline S-layer protein on silicon surfaces. Colloids Surf. B, 8:157–162, 1997.

    Article  Google Scholar 

  30. D. Pum, M. Weinhandl, C. Hödl, and U.B. Sleytr. Large-scale recrystallization of the S-layer of Bacillus coagulans E38-66 at the air/water interface and on lipid films. J. Bacteriol., 175:2762–2766, 1993.

    Google Scholar 

  31. K. Roberts, G.J. Hills, and P.J. Shaw. The structure of algal cell walls. In J.R. Harris, editor, Electron Microscopy of Proteins, volume 3, pages 1–40. Academic Press, London, 1982.

    Google Scholar 

  32. D. Rünzler, C. Huber, D. Moll, G. Köhler, and M. Sára. Biophysical characterization of the entire bacterial surface layer protein SbsB and its two distinct functional domains. J. Biol. Chem., 279:5207–5215, 2004.

    Article  Google Scholar 

  33. M. Sára. Conserved anchoring mechanisms between crystalline cell surface S-layer proteins and secondary cell wall polymers in Gram-positive bacteria. Trends Microbiol., 9:47–49, 2001.

    Article  Google Scholar 

  34. M. Sára, D. Pum, B. Schuster, and U.B. Sleytr. S-layers as patterning elements for application in nanobiotechnology. J. Nanosci. Nanotechnol., 2005. In press.

    Google Scholar 

  35. M. Sára and U.B. Sleytr. S-layer proteins. J. Bacteriol., 182:859–868, 2000.

    Article  Google Scholar 

  36. C. Schäffer and P. Messner. The structure of secondary cell wall polymers: how Gram-positive bacteria stick their cell walls together. Microbiol., 151:643–651, 2005.

    Article  Google Scholar 

  37. C. Schäffer, T. Wugeditsch, H. Kählig, A. Scheberl, S. Zayni, and P. Messner. The surface layer (S-layer) glycoprotein of Geobacillus stearothermophilus NRS 2004/3a. Analysis of its glycosylation. J. Biol. Chem., 277:6230–6239, 2002.

    Article  Google Scholar 

  38. B. Schuster, E. Györvary, D. Pum, and U.B. Sleytr. Nanotechnology with Slayer proteins. Methods Mol. Biol., 300:101–124, 2005.

    Google Scholar 

  39. B. Schuster, D. Pum, O. Braha, H. Bayley, and U.B. Sleytr. Self-assembled alpha-hemolysin pores in an S-layer-supported lipid bilayer. Biochim. Biophys. Acta, 1370:280–288, 1998.

    Article  Google Scholar 

  40. B. Schuster, D. Pum, M. Sára, O. Braha, H. Bayley, and U.B. Sleytr. S-layer ultrafiltration membranes: a new support for stabilizing functionalized lipid membranes. Langmuir, 17:499–503, 2001.

    Article  Google Scholar 

  41. B. Schuster, D. Pum, and U.B. Sleytr. Voltage clamp studies on S-layer supported tetraether lipid membranes. Biochim. Biophys. Acta, 1369:51–60, 1998.

    Article  Google Scholar 

  42. B. Schuster and U.B. Sleytr. S-layer-supported lipid membranes. Rev. Mol. Biotechnol., 74:233–254, 2000.

    Article  Google Scholar 

  43. B. Schuster and U.B. Sleytr. The effect of hydrostatic pressure on S-layer-supported lipid membranes. Biochim. Biophys. Acta, 1563:29–34, 2002.

    Article  Google Scholar 

  44. B. Schuster and U.B. Sleytr. Single channel recordings of alpha-hemolysin reconstituted in S-layer-supported lipid bilayers. Bioelectrochemistry, 55:5–7, 2002.

    Article  Google Scholar 

  45. B. Schuster and U.B. Sleytr. 2D-protein crystals (S-layers) as supports for lipid membranes. In T.H. Tien and A. Ottowa, editors, Advances in Planar Lipid Bilayers and Liposomes, volume 1, pages 247–293. Elsevier Science, Amsterdam, 2005.

    Google Scholar 

  46. B. Schuster, S. Weigert, D. Pum, M. Sára, and U.B. Sleytr. New method for generating tetraether lipid membranes on porous supports. Langmuir, 19:2392–2397, 2003.

    Article  Google Scholar 

  47. N.C. Seeman. At the crossroads of chemistry, biology and materials: structural DNA nanotechnology. Chem. Biol., 10:1151–1159, 2003.

    Article  Google Scholar 

  48. N.C. Seeman. DNA in a material world. Nature, 421:33–37, 2003.

    Article  Google Scholar 

  49. U.B. Sleytr. Heterologous reattachment of regular arrays of glycoproteins on bacterial surfaces. Nature, 257:400–402, 1975.

    Article  Google Scholar 

  50. U.B. Sleytr. Regular arrays of macromolecules on bacterial cell walls: structure, chemistry, assembly, and function. Int. Rev. Cytol., 53:1–64, 1978.

    Article  Google Scholar 

  51. U.B. Sleytr and T.J. Beveridge. Bacterial S-layers. Trends Microbiol., 7:253–260, 1999.

    Article  Google Scholar 

  52. U.B. Sleytr, E.-M. Egelseer, D. Pum, and B. Schuster. S-layers. In C. Niemeyer and C. Mirkin, editors, Nanobiotechnology, pages 77–92. Wiley-VCH, Weinheim, 2004.

    Google Scholar 

  53. U.B. Sleytr and P. Messner. Self-assemblies of crystalline bacterial cell surface layers. In H. Plattner, editor, Electron Microscopy of Subcellular Dynamics, pages 13–31. CRC Press, Boca Raton, 1989.

    Google Scholar 

  54. U.B. Sleytr, P. Messner, D. Pum, and M. Sára. Crystalline Bacterial Cell Surface Proteins. R. G. Landes/Academic Press, Austin, TX, 1996.

    Google Scholar 

  55. U.B. Sleytr, P. Messner, D. Pum, and M. Sára. Crystalline bacterial cell surface layers (S-layers): from supramolecular cell structure to biomimetics and nanotechnology. Angew. Chem.-Int. Ed., 38:1034–1054, 1999.

    Article  Google Scholar 

  56. U.B. Sleytr, M. Sára, and D. Pum. Crystalline bacterial cell surface layers (Slayers): a versatile self-assembly system. In A. Ciferri, editor, Supramolecular Polymerization, pages 177–213. Marcel Dekker, New York, 2000.

    Google Scholar 

  57. U.B. Sleytr, M. Sára, D. Pum, and B. Schuster. Molecular nanotechnology and nanobiotechnology with two-dimensional protein crystals (S-layers). In M. Rosoff, editor, Nano-Surface Chemistry, pages 333–389. Marcel Dekker, New York, 2001.

    Google Scholar 

  58. U.B. Sleytr, M. Sára, D. Pum, B. Schuster, P. Messner, and C. Schäffer. Self assembly protein systems: microbial S-layers. In A. Steinbüchel, editor, Biopolymers, volume 3 of Polyamides and Complex Proteinaceous Materials (Part A), pages 285–338. Wiley-VCH, Weinheim, 2003.

    Google Scholar 

  59. K.O. Stetter. Extremophiles and their adaption to hot environments. FEBS Lett., 452:22–25, 1999.

    Article  Google Scholar 

  60. J. Tien, Y. Xia, and G.M. Whitesides. Microcontact printing of SAMs. In A. Ulman, editor, Thin Films, volume 24, pages 227–253. Academic Press, 1998.

    Google Scholar 

  61. J.L. Toca-Herrera, R. Krastev, V. Bosio, S. Küpcü, D. Pum, A. Fery, M. Sára, and U.B. Sleytr. Recrystallization of bacterial S-layers on flat polyelectrolyte surfaces and hollow polyelectrolyte capsules. Small, 1:339–348, 2005.

    Article  Google Scholar 

  62. J.L. Toca-Herrera, S. Moreno-Flores, J. Friedmann, D. Pum, and U.B. Sleytr. Chemical and thermal denaturation of crystalline bacterial S-layer proteins: an atomic force microscopy study. Microsc. Res. Technol., 65:226–234, 2004.

    Article  Google Scholar 

  63. C. Völlenkle, S. Weigert, N. Ilk, E. Egelseer, V. Weber, F. Loth, D. Falkenhagen, U.B. Sleytr, and M. Sára. Construction of a functional S-layer fusion protein comprising an immunoglobulin G-binding domain for development of specific adsorbents for extracorporeal blood purification. Appl. Environ. Microbiol., 70:1514–1521, 2004.

    Article  Google Scholar 

  64. M. Weygand, K. Kjaer, P.B. Howes, B. Wetzer, D. Pum, U.B. Sleytr, and M. Lösche. Structural reorganization of phospholipid headgroups upon recrystallization of an S-layer lattice. J. Phys. Chem. B, 106:5793–5799, 2002.

    Article  Google Scholar 

  65. M. Weygand, M. Schalke, P.B. Howes, K. Kjaer, J. Friedmann, B. Wetzer, D. Pum, U.B. Sleytr, and M. Lösche. Coupling of protein sheet crystals (Slayers) to phospholipid monolayers. J. Mater. Chem., 10:141–148, 2000.

    Article  Google Scholar 

  66. M. Weygand, B. Wetzer, D. Pum, U.B. Sleytr, N. Cuvillier, K. Kjaer, P.B. Howes, and M. Losche. Bacterial S-layer protein coupling to lipids: X-ray reflectivity and grazing incidence diffraction studies. Biophys. J., 76:458–468, 1999.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pum, D., Sára, M., Schuster, B., Sleytr, U.B. (2006). Bacterial Surface Layer Proteins: a Simple but Versatile Biological Self-assembly System in Nature. In: Chen, J., Jonoska, N., Rozenberg, G. (eds) Nanotechnology: Science and Computation. Natural Computing Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-30296-4_17

Download citation

  • DOI: https://doi.org/10.1007/3-540-30296-4_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-30295-7

  • Online ISBN: 978-3-540-30296-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics