Advertisement

Magnetic Resonance Imaging for Radiotherapy Planning

  • Lothar R. Schad
Part of the Medical Radiology book series (MEDRAD)

Keywords

Radiat Oncol Biol Phys Blood Oxygen Level Dependent Arterial Spin Label Magn Reson Image Corrected Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aboagye EO, Maxwell RJ, Kelson AB, Tracy M, Lewis AD, Graham MA, Horsman MR, Griffiths JR, Workman P (1997) Preclinical evaluation of the fluorinated 2-nitroimidazole N-(2-hydroxy-3,3,3-trifluoropropyl)-2-(2-nitro-1-imidazolyl) acetamide (SR-4554) as a probe for the measurement of tumor hypoxia. Cancer Res 57:3314–3318PubMedGoogle Scholar
  2. Baudelet C, Gallez B (2002) How does blood oxygen level-dependent (BOLD) contrast correlate with oxygen partial pressure (pO2) inside tumors? Magn Reson Med 48:980–986PubMedCrossRefGoogle Scholar
  3. Bortfeld T, Boyer AL, Schlegel W, Kahler DL, Waldron TJ (1994) Realization and verification of three-dimensional conformal radiotherapy with modulated fields. J Radiat Oncol Biol Phys 30:899–908Google Scholar
  4. Buxton RB, Frank LR, Wong EC, Siewert B, Warach S, Edelman RR (1998) A general kinetic model for quantitative perfusion imaging with arterial spin labeling. Magn Res Med 40:383–396Google Scholar
  5. Detre JA, Leigh JS, Williams DS, Koretsky AP (1992) Perfusion imaging. Magn Reson Med 23:37–45PubMedGoogle Scholar
  6. Edelman RR, Siewert B, Adamis M, Gaa J, Laub G, Wielopolski P (1994) Signal targeting with alternating radiofrequency (STAR) sequences: application to MR angiography. Magn Reson Med 31:233–238PubMedGoogle Scholar
  7. Essig M, Engenhart R, Knopp MV, Bock M, Scharf J, Debus J, Wenz F, Hawighorst H, Schad LR, van Kaick G (1996) Cerebral arteriovenous malformations: improved nidus demarcation by means of dynamic tagging MR-angiography. Magn Reson Imaging 14:227–233PubMedGoogle Scholar
  8. Essig M, Reichenbach JR, Schad LR, Schoenberg SO, Debus J, Kaiser WA (1999) High-resolution MR venography of cerebral arteriovenous malformations. Magn Reson Imaging 17:1417–1425PubMedGoogle Scholar
  9. Griffiths JR, Taylor NJ, Howe FA, Saunders MI, Robinson SP, Hoskin PJ, Powell ME, Thoumine M, Caine LA, Baddeley H (1997) The response of human tumors to carbogen breathing, monitored by gradient-recalled echo magnetic resonance imaging. Int J Radiat Oncol Biol Phys 39:697–701PubMedCrossRefGoogle Scholar
  10. Horsman MR (1998) Measurement of tumor oxygenation. Int J Radiat Oncol Biol Phys 42:701–704PubMedGoogle Scholar
  11. Howe FA, Robinson SP, Rodrigues LM, Griffiths JR (1999) Flow and oxygenation dependent (FLOOD) contrast MR imaging to monitor the response of rat tumors to carbogen breathing. Magn Reson Imaging 17:1307–1318PubMedGoogle Scholar
  12. Jezzard P, Balaban RS (1995) Correction of geometric distortion in echo planar imaging from B0 field variations. Magn Reson Med 34:65–73PubMedGoogle Scholar
  13. Kim S-G (1995) Quantification of relative cerebral blood flow change by flow-sensitive alternating inversion recovery (FAIR) technique: application to functional mapping. Magn Reson Med 34:293–301PubMedGoogle Scholar
  14. Luh WM, Wong EC, Bandettini PA, Hyde JS (1999) QUIPSS II with thin-slice TI, periodic saturation: a method for improving accuracy of quantitative perfusion imaging using pulsed arterial spin labeling. Magn Reson Med 41:1246–1254PubMedCrossRefGoogle Scholar
  15. Mansfield P, Pykett IL (1978) Biological and medical imaging by NMR. J Magn Reson 29:355–373Google Scholar
  16. O’Donnell M, Edelstein WA (1985) NMR imaging in the presence of magnetic field inhomogeneities and gradient field nonlinearities. Med Phys 12:20–26PubMedGoogle Scholar
  17. Ogawa S, Lee TM, Nayak AS, Glynn P (1990) Oxygenationsensitive contrast in magnetic resonance image of rodent brain at high magnetic fields. Magn Reson Med 14:68–78PubMedGoogle Scholar
  18. Reichenbach JR, Venkatesan R, Schillinger DJ, Kido DK, Haacke EM (1997) Small vessels in the human brain: MR venography with deoxyhemoglobin as an intrinsic contrast agent. Radiology 204:272–277PubMedGoogle Scholar
  19. Schad LR (1995) Correction of spatial distortion in magnetic resonance imaging for stereotactic operation/treatment planning in the brain. In: Hartmann GH (ed) Quality assurance program on stereotactic radiosurgery. Springer, Berlin Heidelberg New York, pp 80–89Google Scholar
  20. Schad LR (2001) Improved target volume characterization in stereotactic treatment planning of brain lesions by using high-resolution BOLD MR-venography. NMR Biomed 14:478–483PubMedCrossRefGoogle Scholar
  21. Schad LR, Lott S, Schmitt F, Sturm V, Lorenz WJ (1987a) Correction of spatial distortion in MR imaging: a prerequisite for accurate stereotaxy. J Comput Assist Tomogr 11:499–505PubMedGoogle Scholar
  22. Schad LR, Boesecke R, Schlegel W, Hartmann G, Sturm V, Strauss L, Lorenz WJ (1987b) Three dimensional image correlation of CT, MR, and PET studies in radiotherapy treatment planning of brain tumours. J Comput Assist Tomogr 11:948–954PubMedGoogle Scholar
  23. Schad LR, Ehricke HH, Wowra B, Layer G, Engenhart R, Kauczor HU, Zabel HJ, Brix G, Lorenz WJ (1992) Correction of spatial distortion in magnetic resonance angiography for radiosurgical planning of cerebral arteriovenous malformations. Magn Reson Imaging 10:609–621PubMedGoogle Scholar
  24. Schad LR, Bock M, Baudendistel K, Essig M, Debus J, Knopp MV, Engenhart R, Lorenz WJ (1996) Improved target volume definition in radiosurgery of arteriovenous malformations by stereotactic correlation of MRA, MRI blood bolus tagging, and functional MRI. Eur Radiol 6:38–45PubMedCrossRefGoogle Scholar
  25. Schlegel W, Scharfenberg H, Doll J, Pastyr O, Sturm V, Netzeband G, Lorenz WJ (1982) CT-images as the basis of operation planning in stereotactical neurosurgery. Proceedings of First International Symposium on Medical Imaging and Image Interpretation. IEEE Computer Society, Silver Spring, pp 172–177Google Scholar
  26. Schlegel W, Scharfenberg H, Doll J, Hartmann G, Sturm V, Lorenz WJ (1984) Three dimensional dose planning using tomographic data. Proc 8th International Conference on the Use of Computers in Radiation Therapy. IEEE Computer Society, Silver Spring, pp 191–196Google Scholar
  27. Van Zijl PCM, Eleff SM, Ulatowski JA, Oja JME, Ulug AM, Traystman RJ, Kauppinen RA (1998) Quantitative assessment of blood flow, blood volume and blood oxygenation effects in functional magnetic resonance imaging. Nature Med 4:159–167PubMedGoogle Scholar
  28. Weber MA, Thilmann C, Lichy MP, Günther M, Delorme S, Zuna I, Bongers A, Schad LR, Debus J, Kauczor HU, Essig M, Schlemmer HP (2004) Assessment of irradiated brain metastases by means of arterial spin-labeling and dynamic susceptibility-weighted contrast-enhanced perfusion MRI: initial results. Invest Radiol 39:277–287PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Lothar R. Schad
    • 1
  1. 1.Abteilung Medizinische Physik in der RadiologieDeutsches KrebsforschungszentrumHeidelbergGermany

Personalised recommendations