Image Registration and Data Fusion for Radiotherapy Treatment Planning

  • Marc L. Kessler
  • Michael Roberson
Part of the Medical Radiology book series (MEDRAD)


Mutual Information Image Registration Data Fusion Compute Tomography Study Geometric Transformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allal AS, Slosman DO, Kebdani T, Allaoua M, Lehmann W, Dulguerov P (2004) Prediction of outcome in head-and-neck cancer patients using the standardized uptake value of 2-[18F]fluoro-2-deoxy-D-glucose. Int J Radiat Oncol Biol Phys 59:1295–1300PubMedCrossRefGoogle Scholar
  2. Barthel H, Cleij MC, Collingridge DR, Hutchinson OC, Osman S, He Q, Luthra SK, Brady F, Price PM, Aboagye EO (2003) 3′-deoxy-3′-[18F]fluorothymidine as a new marker for monitoring tumor response to antiproliferative therapy in vivo with positron emission tomography. Cancer Res 63:3791–3798PubMedGoogle Scholar
  3. Bharatha A, Hirose M, Hata N, Warfield SK, Ferrant M, Zou KH, Suarez-Santana E, Ruiz-Alzola J, D’Amico A, Cormack RA, Kikinis R, Jolesz FA, Tempany CM (2001) Evaluation of three-dimensional finite element-based deformable registration of pre-and intraoperative prostate imaging. Med Phys 28:2551–2260PubMedCrossRefGoogle Scholar
  4. Bookstein FL (1989) Principal warps: thin-plate splines and the decomposition of deformations. IEEE Trans Pattern Anal Mach Intell Vol 11.6:567–585Google Scholar
  5. Brun E, Kjellen E, Tennvall J, Ohlsson T, Sandell A, Perfekt R, Perfekt R, Wennerberg J, Strand SE (2002) FDG PET studies during treatment: prediction of therapy outcome in head and neck squamous cell carcinoma. Head Neck 24:127–135PubMedCrossRefGoogle Scholar
  6. Chenevert TL, Stegman LD, Taylor JM, Robertson PL, Greenberg HS, Rehemtulla A, Ross BD (2000) Diffusion magnetic resonance imaging: an early surrogate marker of therapeutic efficacy in brain tumors. J Natl Cancer Inst 92:2029–2036PubMedCrossRefGoogle Scholar
  7. Kim J, Fessler JA (2004) Intensity-based image registration using robust correlation coefficients. IEEE Trans Med Imaging 23:1430–1444PubMedCrossRefGoogle Scholar
  8. Maintz JB, Viergever MA (1998) A survey of medical image registration. Med Image Anal 2:1–36PubMedCrossRefGoogle Scholar
  9. Mardor Y, Pfeffer R, Spiegelmann R, Roth Y, Maier SE, Nissim O, Berger R, Glicksman A, Baram J, Orenstein A, Cohen JS, Tichler T (2003) Early detection of response to radiation therapy in patients with brain malignancies using conventional and high b-value diffusion-weighted magnetic resonance imaging. J Clin Oncol 21:1094–1100PubMedCrossRefGoogle Scholar
  10. National Electrical Manufacturers Association (2004) DICOM, part 3, PS3.3 — service class specifications. Rosslyn, VirginaGoogle Scholar
  11. Roman S (1997) Introduction to coding and information theory. Undergraduate texts in mathematics. Springer, Berlin Heidelberg New YorkGoogle Scholar
  12. Thirion JP (1998) Image matching as a diffusion process: an analogy with Maxwell’s demons. Med Image Anal 2:243–260PubMedCrossRefGoogle Scholar
  13. Unser M (1999) Splines: a perfect fit for signal and image processing. IEEE Sign Process Mag Vol 16.6:22–38Google Scholar
  14. Wells WM 3rd, Viola P, Atsumi H, Nakajima S, Kikinis R (1996) Multi-modal volume registration by maximization of mutual information. Med Image Anal Vol 1.1:35–51Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Marc L. Kessler
    • 1
  • Michael Roberson
    • 1
  1. 1.Department of Radiation OncologyThe University of Michigan Medical SchoolAnn ArborUSA

Personalised recommendations