3D Visualization

  • Gorgios Sakas
  • Andreas Pommert
Part of the Medical Radiology book series (MEDRAD)


Mutual Information Volume Rendering Comput Graph Direct Volume Volume Visualization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arata LK, Dhawan AP, Broderick JP, Gaskil-Shipley MF, Levy AV, Volkow ND (1995) Three-dimensional anatomical model-based segmentation of MR brain images through principal axes registration. IEEE Trans Biomed Eng 42:1069–1078PubMedCrossRefGoogle Scholar
  2. Arnold JB, Liow J-S, Schaper KA, Stern JJ, Sled JG, Shattuck DW, Worth AJ, Cohen MS, Leahy RM, Mazziotta JC, Rottenberg DA (2001) Qualitative and quantitative evaluation of six algorithms for correcting intensity nonuniformity effects. Neuro-Image 13:931–943PubMedGoogle Scholar
  3. Biswas TK, Gupta AK (2002). Retrieval of true color of the internal organ of CT images and attempt to tissue characterization by refractive index: initial experience. Ind J Radiol Imaging 12:169–178Google Scholar
  4. Bomans M, Riemer M, Tiede U, Höhne KH (1987) 3D-Segmentation von Kernspin-Tomogrammen. In: Paulus E (ed) Mustererkennung 1987. Proc of the 9th DAGM symposium. Informatik-Fachberichte, vol 149. Springer, Berlin Heidelberg New York, pp 231–235Google Scholar
  5. Brinkley JF, Wong BA, Hinshaw KP, Rosse C (1999) Design of an anatomy information system. IEEE Comput Graphics Appl 19:38–48Google Scholar
  6. Bromm B, Scharein E (1996) Visualisation of pain by magnetoencephalography in humans. In: Höhne KH, Kikinis R (eds) Visualization in biomedical computing. Proc VBC’ 96. Springer, Berlin Heidelberg New York, pp 477–481 (Lect Notes Comput Sci, vol 1131)Google Scholar
  7. Cai W, Sakas G (1998) Maximum intensity projection using splatting in sheared object space. Comput Graph Forum 17:113–124CrossRefGoogle Scholar
  8. Cai W, Sakas G, (1999) Transfer functions in DRR volume rendering. In: Lemke HU et al. Computer assisted radiology and surgery (CARS). Proceedings. Amsterdam, Lausanne:Elsevier, pp. 284–289 (International Congress Series 1191).Google Scholar
  9. Cai W, Karangelis G, Sakas G (1999) Volume interaction techniques in the virtual simulation of radiotherapy treatment planning. In: Keldysh Institute of Applied Mathematics: Graphicon. Proceedings. Moscow, pp. 231–239Google Scholar
  10. Cai W, Walter S, Karangelis G, Sakas G (2000) Collaborative virtual simulation environment for radiotherapy treatment planning. In: Computer Graphics Forum 19,3 pp. C-379–C-390Google Scholar
  11. Canny J (1986) A computational approach to edge detection. IEEE Trans Pattern Anal Machine Intell 8:679–698Google Scholar
  12. Capek M, Mroz L, Wegenkittl R (2001) Robust and fast medical registration of 3D multi-modality data sets, Medicon 2001, IXth Mediterranean conference on medical and biological engineering and computing, Pula, Croatia, pp 515–518Google Scholar
  13. Caselles V, Kimmel R, Sapiro G (1997). Geodesic active contours. International Journal on Computer Vision, 22(1):61–97, 1997Google Scholar
  14. Cignoni P, Montani C, Scopigno R (1998) A comparison of mesh simplification algorithms. Comput Graph 22:37–54CrossRefGoogle Scholar
  15. Cignoni P, Ganovelli F, Montani C, Scopigno R (2000) Reconstruction of topologically correct and adaptive trilinear isosurfaces. Comput Graph 24:399–418CrossRefGoogle Scholar
  16. Clarke LP, Velthuizen RP, Camacho MA, Heine JJ, Vaidyanathan M, Hall LO, Thatcher RW, Silbiger ML (1995) MRI segmentation: methods and applications. Magn Reson Imaging 13:343–368PubMedGoogle Scholar
  17. Cline HE, Lorensen WE, Kikinis R, Jolesz F (1990) Three-dimensional segmentation of MR images of the head using probability and connectivity. J Comput Assist Tomogr 14:1037–1045PubMedGoogle Scholar
  18. Collignon A, Maes F, Delaere D, Vandermeulen D, Suetens P, Marchal G, Viola P, Wells W (1995) Automated multimodality medical image registration using information theory. Fourteenth International Conference on Information Processing in Medical Imaging. Kluwer, Boston, pp 263–274 (Computational Imaging and Vision, vol 3)Google Scholar
  19. Collins DL, Zijdenbos AP, Barré WFC, Evans AC (1999) ANIMAL+INSECT: improved cortical structure segmentation. In: Kuba A, Samal M, Todd-Pokropek A (eds) Information processing in medical imaging. Proc IPMI 1999. Springer, Berlin Heidelberg New York, pp 210–223 (Lect Notes Comput Sci, vol 1613)Google Scholar
  20. Drebin RA, Carpenter L, Hanrahan P (1988) Volume rendering. Comput Graphics 22:65–74Google Scholar
  21. Duncan JS, Ayache N (2000) Medical image analysis: progress over two decades and the challenges ahead. IEEE Trans Pattern Anal Machine Intell 22:85–105CrossRefGoogle Scholar
  22. Firle E, Wesarg S, Karangelis G, Dold C (2003) Validation of 3D ultrasound-CT registration of prostate images. Medical Imaging 2003. Proc SPIE 5032, Bellingham, pp 354–362Google Scholar
  23. Firle E, Wesarg S, Dold C (2004) Fast CT/PET registration based on partial volume matching. Computer assisted radiology and surgery. Proc CARS 2004. Elsevier, Amsterdam, pp 31–36Google Scholar
  24. Foley JD, van Dam A, Feiner SK, Hughes JF (1995) Computer graphics: principles and practice, 2nd edn. Addison-Wesley, Reading, MassachusettsGoogle Scholar
  25. Gerig G, Martin J, Kikinis R, Kübler O, Shenton M, Jolesz FA (1992) Unsupervised tissue type segmentation of 3D dual-echo MR head data. Image Vision Comput 10:349–360CrossRefGoogle Scholar
  26. Golland P, Kikinis R, Halle M, Umans C, Grimson WEL, Shenton ME, Richolt JA (1999) Anatomy browser: a novel approach to visualization and integration of medical information. Comput Aided Surg 4:129–143PubMedCrossRefGoogle Scholar
  27. Hamann B, Trotts I, Farin G (1997) On approximating contours of the piecewise trilinear interpolant using triangular rationalquadratic Bézier patches. IEEE Trans Visual Comput Graph 3:215–227Google Scholar
  28. He T (1998) Wavelet-assisted volume ray casting. Pac Symp Biocomput 1998, pp 153–164Google Scholar
  29. Hemmingsson A, Jung B (1980) Modification of grey scale in computer tomographic images. Acta Radiol Diagn (Stockh) 21:253–255Google Scholar
  30. Herman GT (1991) The tracking of boundaries in multidimensional medical images. Comput Med Imaging Graph 15:257–264PubMedGoogle Scholar
  31. Hildebrand A, Sakas G (1996) Innovative 3D-methods in medicine. Korea Society of Medical and Biomedical Engineering. Advanced Medical Image Processing Proceedings 1996, Seoul, KoreaGoogle Scholar
  32. Höhne KH, Bernstein R (1986) Shading 3D-images from CT using gray level gradients. IEEE Trans Med Imaging MI-5:45–47Google Scholar
  33. Höhne KH, Hanson WA (1992) Interactive 3D-segmentation of MRI and CT volumes using morphological operations. J Comput Assist Tomogr 16:285–294PubMedGoogle Scholar
  34. Höhne KH, Bomans M, Pommert A, Riemer M, Schiers C, Tiede U, Wiebecke G (1990) 3D-visualization of tomographic volume data using the generalized voxel-model. Visual Comput 6:28–36Google Scholar
  35. Höhne KH, Pflesser B, Pommert A, Riemer M, Schiemann T, Schubert R, Tiede U (1995) A new representation of knowledge concerning human anatomy and function. Nat Med 1:506–511PubMedGoogle Scholar
  36. Höhne KH, Pflesser B, Pommert A, Riemer M, Schiemann T, Schubert R, Tiede U (1996) A virtual body model for surgical education and rehearsal. IEEE Comput 29:25–31Google Scholar
  37. Höhne KH, Petersik A, Pflesser B, Pommert A, Priesmeyer K, Riemer M, Schiemann T, Schubert R, Tiede U, Urban M, Frederking H, Lowndes M, Morris J (2001) VOXEL-MAN 3D navigator: brain and skull. Regional, functional and radiological anatomy. Springer Electronic Media, Heidelberg (2 CD-ROMs, ISBN 3-540-14910-4)Google Scholar
  38. Höhne KH, Pflesser B, Pommert A, Priesmeyer K, Riemer M, Schiemann T, Schubert R, Tiede U, Frederking H, Gehrmann S, Noster S, Schumacher U (2003) VOXEL-MAN 3D navigator: inner organs. Regional, systemic and radiological anatomy. Springer Electronic Media, Heidelberg (DVD-ROM, ISBN 3-540-40069-9)Google Scholar
  39. Kass M, Witkin A, Terzopoulos D (1987) Snakes: active contour models. Proc 1st ICCV, June 1987, London, pp 259–268Google Scholar
  40. Kikinis R, Shenton ME, Iosifescu DV, McCarley RW, Saiviroonporn P, Hokama HH, Robatino A, Metcalf D, Wible CG, Portas CM, Donnino RM, Jolesz FA (1996) A digital brain atlas for surgical planning, model driven segmentation, and teaching. IEEE Trans Visual Comput Graphics 2:232–241CrossRefGoogle Scholar
  41. Kindlmann G, Durkin JW (1998) Semi-automatic generation of transfer functions for direct volume rendering, volume visualization. IEEE symposium on 19–20 October 1998, pp 79–86, 170Google Scholar
  42. Kirbas C, Quek FKH (2003) Vessel extraction techniques and algorithms: a survey, bioinformatics and bioengineering 2003. Proc 3rd IEEE Symposium, 10–12 March 2003, pp 238–245Google Scholar
  43. Kniss J, Kindlmann G, Hansen C (2002) Multidimensional transfer functions for interactive volume rendering, visualization and computer graphics. IEEE Trans 8:270–285Google Scholar
  44. Lacroute P, Levoy M (1994) Fast volume rendering using a shearwarp factorization of the viewing transformation. Proc SIGGRAPH 1994, Orlando, Florida, July 1994, pp 451–458Google Scholar
  45. Levoy M (1988) Display of surfaces from volume data. IEEE Comput Graph Appl 8:29–37CrossRefGoogle Scholar
  46. Levoy M (1990) A hybrid ray tracer for rendering polygon and volume data. IEEE Comput Graph Appl 10:33–40CrossRefGoogle Scholar
  47. Lorensen WE, Cline HE (1987) Marching cubes: a high resolution 3D surface construction algorithm. Comput Graph 21:163–169Google Scholar
  48. Maes F, Collignon A, Vandermeulen D, Marchal G, Suetens P (1997) Multimodality image registration by maximization of mutual information. IEEE Trans Med Imaging 16:187–198PubMedCrossRefGoogle Scholar
  49. Maintz JBA, Viergever M (1998) A survey of medical image registration. Med Image Anal 2:1–36PubMedCrossRefGoogle Scholar
  50. Marschner SR, Lobb RJ (1994) An evaluation of reconstruction filters for volume rendering. In: Bergeron RD, Kaufman AE (eds) Proc IEEE visualization 1994. IEEE Computer Society Press, Los Alamitos, Calif., pp 100–107Google Scholar
  51. Max N (1995) Optical models for direct volume rendering, IEEE Trans Visual & Comput Graph, 1(2):99–108Google Scholar
  52. Mazziotta JC, Toga AW, Evans AC, Fox P, Lancaster J (1995) A probabilistic atlas of the human brain: theory and rationale for its development. NeuroImage 2:89–101PubMedCrossRefGoogle Scholar
  53. Möller T, Machiraju R, Mueller K, Yagel R (1997) Evaluation and design of filters using a Taylor series expansion. IEEE Trans Visual Comput Graph 3:184–199Google Scholar
  54. Mroz L, Hauser H, Gröller E (2000) Interactive high-quality maximum intensity projection. Comput Graphics Forum 19:341–350CrossRefGoogle Scholar
  55. Natarajan BK (1994) On generating topologically consistent isosurfaces from uniform samples. Visual Comput 11:52–62CrossRefGoogle Scholar
  56. Nowinski WL, Thirunavuukarasuu A (2001) Atlas-assisted localization analysis of functional images. Med Image Anal 5:207–220PubMedCrossRefGoogle Scholar
  57. Olabarriaga SD, Smeulders AWM (2001) Interaction in the segmentation of medical images: a survey. Med Image Anal 5:127–142PubMedCrossRefGoogle Scholar
  58. Pluim J, Maintz J, Viergever M (2001) Mutual information matching in multiresolution contexts. Image Vision Comput 19:45–52CrossRefGoogle Scholar
  59. Pluim J, Maintz J, Viergever M (2003) Mutual information based registration of medical images: a survey. IEEE Trans Med Imaging 22:986–1004PubMedGoogle Scholar
  60. Pommert A (2004) Simulationsstudien zur Untersuchung der Bildqualität für die 3D-Visualisierung tomografischer Volumendaten. Books on Demand, Norderstedt 2004 (zugleich Dissertation, Fachbereich Informatik, Universität Hamburg)Google Scholar
  61. Pommert A, Höhne KH, Pflesser B, Richter E, Riemer M, Schiemann T, Schubert R, Schumacher U, Tiede U (2001) Creating a high-resolution spatial/symbolic model of the inner organs based on the visible human. Med Image Anal 5:221–228PubMedCrossRefGoogle Scholar
  62. Saeed N, Hajnal JV, Oatridge A (1997) Automated brain segmentation from single slice, multislice, or whole-volume MR scans using prior knowledge. J Comput Assist Tomogr 21:192–201PubMedCrossRefGoogle Scholar
  63. Sakas G, Grimm M, Savopoulos A (1995) Optimized maximum intensity projection (MIP). In: Hanrahan P et al. 6th Eurographics workshop on rendering. Proceedings. Eurographics, pp. 81–93Google Scholar
  64. Schiemann T, Höhne KH, Koch C, Pommert A, Riemer M, Schubert R, Tiede U (1994) Interpretation of tomographic images using automatic atlas lookup. In: Robb RA (ed) Visualization in biomedical computing 1994. Proc SPIE 2359, Rochester, Minnesota, pp 457–465Google Scholar
  65. Schiemann T, Tiede U, Höhne KH (1997) Segmentation of the visible human for high quality volume based visualization. Med Image Anal 1:263–271PubMedCrossRefGoogle Scholar
  66. Schmahmann JD, Doyon J, McDonald D, Holmes C, Lavoie K, Hurwitz AS, Kabani N, Toga A, Evans A, Petrides M (1999) Three-dimensional MRI atlas of the human cerebellum in proportional stereotaxic space. NeuroImage 10:233–260PubMedCrossRefGoogle Scholar
  67. Schroeder WJ, Zarge JA, Lorensen WE (1992) Decimation of triangle meshes. Comput Graph 26:65–70Google Scholar
  68. Schubert R, Pflesser B, Pommert A et al. (1999) Interactive volume visualization using ”intelligent movies”. In: Westwood JD, Hoffman HM, Robb RA, Stredney D (eds) Medicine meets virtual reality. Proc MMVR 1999. IOS Press, Amsterdam, pp 321–327 (Health Technology and Informatics, vol 62)Google Scholar
  69. Sonka M, Hlavac V, Boyle R (1998) Image processing, analysis, and machine vision, 2nd edn. PWS Publishing, Boston, MassGoogle Scholar
  70. Srämek M, Kaufman A (2000) Fast ray-tracing of rectilinear volume data using distance transforms. IEEE Trans Visual Comput Graph 6:236–251Google Scholar
  71. Studholme C, Hill DLG, Hawkes DJ (1996) Automated 3-D registration of MR and CT images of the head. Med Image Anal 1:163–175PubMedCrossRefGoogle Scholar
  72. Styner M, Gerig G (2001) Medial models incorporating object variability for 3D shape analysis. In: Insana MF, Leahy RM (eds) Information processing in medical imaging. Proc IPMI 2001. Springer, Berlin Heidelberg New York, pp 502–516 (Lect Notes Comput Sci, vol 2082)Google Scholar
  73. Thompson PM, Woods RP, Mega MS, Toga AW (2000) Mathematical/computational challenges in creating deformable and probabilistic atlases of the human brain. Hum Brain Mapping 9:81–92CrossRefGoogle Scholar
  74. Tiede U (1999) Realistische 3D-Visualisierung multiattributierter und multiparametrischer Volumendaten. PhD thesis, Fachbereich Informatik, Universität HamburgGoogle Scholar
  75. Tiede U, Höhne KH, Bomans M, Pommert A, Riemer M, Wiebecke G (1990) Investigation of medical 3D-rendering algorithms. IEEE Comput Graph Appl 10:41–53CrossRefGoogle Scholar
  76. Tiede U, Schiemann T, Höhne KH (1998) High quality rendering of attributed volume data. In: Ebert D, Hagen H, Rushmeier H (eds) Proc IEEE Visualization 1998. IEEE Computer Society Press, Los Alamitos, Calif., pp 255–262Google Scholar
  77. Totsuka T, Levoy M (1993) Frequency domain volume rendering. Comput Graph 27:271–278Google Scholar
  78. Van den Elsen P, Pol E, Viergever M (1993) Medical image matching: a review with classification. IEEE Eng Med Biol 12:26–39Google Scholar
  79. Verdonck B, Bloch I, Maître H, Vandermeulen D, Suetens P, Marchal G (1995) Blood vessel segmentation and visualization in 3D MR and spiral CT angiography HU. In: Lemke (ed) Proc CAR 1995. Springer, Berlin Heidelberg New York, pp 177–182Google Scholar
  80. Viola P, Wells W (1997) Alignment by maximization of mutual information. Int J Comput Vis 24:137–154CrossRefGoogle Scholar
  81. Wan M, Kaufman A, Bryson S (1999) High performance presence-accelerated ray casting. Proc IEEE Visualization 1999, San Francisco, Calif., pp 379–386Google Scholar
  82. Warren RC, Pandya YV (1982) Effect of window width and viewing distance in CT display. Br J Radiol 55:72–74PubMedGoogle Scholar
  83. Watt A (2000) 3D computer graphics, 3rd edn. Addison-Wesley, Reading, MassachusettsGoogle Scholar
  84. Wells WM III, Viola P, Atsumi H, Nakajima S, Kikinis R (1996) Multi-modal volume registration by maximization of mutual information. Med Image Anal 1:35–51PubMedCrossRefGoogle Scholar
  85. Wesarg S, Firle EA (2004) Segmentation of vessels: the corkscrew algorithm. Proc of SPIE medical imaging symposium 2004, San Diego (USA), vol 5370, pp 1609–1620Google Scholar
  86. West J, Fitzpatrick JM, Wang MY, Dawant BM, et al. (1997) Comparison and evaluation of retrospective intermodality brain image registration techniques. J Comput Assist Tomogr 21:554–566PubMedCrossRefGoogle Scholar
  87. Wilmer F, Tiede U, Höhne KH (1992) Reduktion der Oberflächenbeschreibung triangulierter Oberflächen durch Anpassung an die Objektform. In: Fuchs S, Hoffmann R (eds) Mustererkennung 1992. Proc 14th DAGM symposium. Springer, Berlin Heidelberg New York, pp 430–436Google Scholar
  88. Winston PH (1992) Artificial intelligence, 3rd edn. Addison-Wesley, Reading, MassachusettsGoogle Scholar
  89. Yagel R, Cohen D, Kaufman A (1992) Discrete ray tracing. IEEE Comput Graph Appl 12:19–28CrossRefGoogle Scholar
  90. Zamboglou N, Karangelis G, Nomikos I, Zimeras S, Helfmann T, Uricchio R, Martin T, Röddiger S, Kolotas C, Baltas D, Sakas G (2003) EXOMIO virtual simulation: oropharynx, prostate and breast cancers. In: Mould, RF (Ed) Progress in CT-3D simulation. Bochum: Medical Innovative Technology, 2003, pp 1–18Google Scholar
  91. Zamboglou N, Karangelis G, Nomikos I, Zimeras S, Kolotas C, Baltas D, Sakas G (2004) Virtual CT-3D simulation using Exomio: With special reference to prostate cancer. In: Nowotwory Journal of Oncology 54, 6 pp 547–554Google Scholar
  92. Zucker S (1976) Region growing: childhood and adolesence. Comput Graph Image Proc 5:382–399Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Gorgios Sakas
    • 1
  • Andreas Pommert
    • 2
  1. 1.Fraunhofer Institute for Computer Graphics (IGD)DarmstadtGermany
  2. 2.Institut für Medizinische Informatik (IMI)Universitätsklinikum Hamburg-EppendorfHamburgGermany

Personalised recommendations