Skip to main content

Image-Guided/Adaptive Radiotherapy

  • Chapter
New Technologies in Radiation Oncology

Part of the book series: Medical Radiology ((Med Radiol Radiat Oncol))

25.8 Summary

Adaptive radiotherapy system is designed to systematically manage treatment feedback, planning, and adjustment in response to temporal variations occurring during the radiotherapy course. A temporal variation process, as well as its subprocess, can be classified as a stationary random process or a nonstationary random process. Image feedback is normally designed based on this classification, and the imaging mode can be selected as radiographic imaging, fluoroscopic imaging, and/or 3D/4D CT imaging, with regard to the feature and frequency of a patient anatomical variation, such as rigid body motion and/ or organ deformation induced by treatment setup,organ filling, patient respiration, and/or dose response. Parameters of a temporal variation process, as well as treatment dose in organs of interest, can be estimated using image observations. The estimations are then used to select the planning/adjustment parameters and the schedules of imaging, delivery, and planning/adjustment. Based on the selected parameters and schedules, 4D adaptive planning/adjustment are performed accordingly.

Adaptive radiotherapy represents a new standard of radiotherapy, where a “pre-designed adaptive treatment strategy” a priori treatment delivery will replace the “pre-designed treatment plan” by considering the efficiency, optima, and also clinical practice and cost.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Antonie Maintz JB, Viergever MA (1998) Medical image analysis, vol 2. Oxford University Press, Oxford, pp 1–38

    Google Scholar 

  • Astrom KJ, Wittenmark B (1995) Adaptive control, 2nd edn. Addison-Wesley, Reading, Massachusetts

    Google Scholar 

  • Bel A et al. (1993) A verification procedure to improve patient setup accuracy using portal images. Radiat Oncol 29:253–260

    CAS  Google Scholar 

  • Birkner M et al. (2003) Adapting inverse planning to patient and organ geometrical variation: algorithm and implementation. Med Phys 30:2822–2831

    Article  PubMed  CAS  Google Scholar 

  • Bortfeld T et al. (2002) When should systematic patient positioning errors in radiotherapy be corrected? Phys Med Biol 47:N297–N302

    Article  PubMed  Google Scholar 

  • Brierley JD et al. (1994) The variation of small bowel volume within the pelvis before and during adjuvant radiation for rectal cancer. Radiother Oncol 31:110–116

    Article  PubMed  CAS  Google Scholar 

  • Brock KK et al. (2003) Inclusion of organ deformation in dose calculations. Med Phys 30:290–295

    PubMed  CAS  Google Scholar 

  • Bryson AE Jr, Ho YC (1975) Applied optimal control. Hemisphere Publishing Corporation, Washington, DC

    Google Scholar 

  • Christensen GE et al. (2001) Image-based dose planning of intracavitary brachytherapy registration of serial-imaging studies using deformable anatomic templates. Int J Radiat Oncol Biol Phys 51:227–243

    Article  PubMed  CAS  Google Scholar 

  • Davies SC et al. (1994) Ultrasound quantitation of respiratory organ motion in the upper abdomen. Br J Radiol 67:1096–1102

    PubMed  CAS  Google Scholar 

  • Ford EC et al. (2002) Evaluation of respiratory movement during gated radiotherapy using film and electronic portal imaging. Int J Radiat Oncol Biol Phys 52:522–531

    Article  PubMed  CAS  Google Scholar 

  • Ford EC et al. (2003) Respiration-correlated spiral CT: a method of measuring respiratory-induced anatomic motion for radiation treatment. Med Phys 30:88–97

    PubMed  CAS  Google Scholar 

  • Ghilezan M et al. (2003) Prostate gland motion assessed with cine magnetic resonance imaging (cine-MRI). Int J Radiat Oncol Biol Phys 62:406–417

    Google Scholar 

  • Halverson KJ et al. (1991) Study of treatment variation in the radiotherapy of head and neck tumors using a fiber-optic on-line radiotherapy imaging system. Int J Radiat Oncol Biol Phys 21:1327–1336

    PubMed  CAS  Google Scholar 

  • Heidi L et al. (2004) A model to predict bladder shapes from changes in bladder and rectal filling. Med Phys 31:1415–1423

    Google Scholar 

  • Hugo G et al. (2004) A method of portal verification of 4D lung treatment. Proc XIIIIth International Conference on The Use of Computers in Radiotherapy (ICCR), Seoul, Korea

    Google Scholar 

  • Keller H et al. (2004) Design of adaptive treatment margins for non-negligible measurement uncertainty: application to ultrasound-guided prostate radiation therapy. Phys Med Biol 49:69–86

    Article  PubMed  CAS  Google Scholar 

  • Liang J et al. (2003) Minimization of target margin by adapting treatment planning to target respiratory motion. Int J Radiat Oncol Biol Phys 57:S233

    Article  Google Scholar 

  • Lof J et al. (1998) An adaptive control algorithm for optimization of intensity modulated radiotherapy considering uncertainties in beam profiles, patient setup and internal organ motion. Phys Med Biol 43:1605–1628

    PubMed  CAS  Google Scholar 

  • Lujan AE et al. (1999) A method for incorporating organ motion due to breathing into 3D dose calculation. Med Phys 26:715–720

    PubMed  CAS  Google Scholar 

  • Marks JE, Haus AG (1976) The effect of immobilization on localization error in the radiotherapy of head and neck cancer. Clin Radiol 27:175–177

    Article  PubMed  CAS  Google Scholar 

  • McInerney T, Terzopoulos D (1996) Deformable models in medical image analysis: a survey. Med Image Anal 1:91–108

    Article  PubMed  CAS  Google Scholar 

  • Moerland MA et al. (1994) The influence of respiration induced motion of the kidneys on the accuracy of radiotherapy treatment planning: a magnetic resonance imaging study. Radiol Oncol 30:150–154

    CAS  Google Scholar 

  • Nuyttens JJ et al. (2001) The small bowel position during adjuvant radiation therapy for rectal cancer. Int J Radiat Oncol Biol Phys 51:1271–1280

    PubMed  CAS  Google Scholar 

  • Nuyttens J et al. (2002) The variability of the clinical target volume for rectal cancer due to internal organ motion during adjuvant treatment. Int J Radiat Oncol Biol Phys 53:497–503

    Article  PubMed  Google Scholar 

  • Pluim JPW et al. (2003) Mutual information based registration of medical images: a survey. IEEE Trans Med Imaging 10:1–21

    Google Scholar 

  • Roeske JC et al. (1995) Evaluation of changes in the size and location of the prostate, seminal vesicles, bladder, and rectum during a course of external beam radiation therapy. Int J Radiat Oncol Biol Phys 33:1321–1329

    Article  PubMed  CAS  Google Scholar 

  • Ross CS et al. (1990) Analysis of movement of intrathoracic neoplasms using ultrafast computerized tomography. Int J Radiat Oncol Biol Phys 18:671–677

    PubMed  CAS  Google Scholar 

  • Sonke J et al. (2003) Respiration-correlated cone beam CT: obtaining a four-dimensional data set. Med Phys 30:14–15

    Article  Google Scholar 

  • Van Herk M et al. (2000) The probability of correct target dosage: dose-population histograms for deriving treatment margins in radiotherapy. Int J Radiat Oncol Biol Phys 47:1121–1135

    PubMed  Google Scholar 

  • Wiener (1949) Extrapolation, interpolation and smoothing of stationary time series. M.I.T. Press, Cambridge, Massachusetts

    Google Scholar 

  • Wong E (1983) Introduction to random processes. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Wu C et al. (2002) Re-optimization in adaptive radiotherapy. Phys Med Biol 47:3181–3195

    PubMed  Google Scholar 

  • Yan D (2000) On-line adaptive strategy for dose per fraction design. Proc XIIIth International Conference on The Use of Computers in Radiotherapy. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Yan D, Lockman D (2001) Organ/patient geometric variation in external beam radiotherapy and its effects. Med Phys 28:593–602

    Article  PubMed  CAS  Google Scholar 

  • Yan D et al. (1995) A new model for “Accept Or Reject” strategies in on-line and off-line treatment evaluation. Int J Radiat Oncol Biol Phys 31:943–952

    Article  PubMed  CAS  Google Scholar 

  • Yan D et al. (1999) A model to accumulate the fractionated dose in a deforming organ. Int J Radiat Oncol Biol Phys 44:665–675

    Article  PubMed  CAS  Google Scholar 

  • Yan D et al. (2000) An off-line strategy for constructing a patient-specific planning target volume for image guided adaptive radiotherapy of prostate cancer. Int J Radiat Oncol Biol Phys 48:289–302

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yan, D. (2006). Image-Guided/Adaptive Radiotherapy. In: Schlegel, W., Bortfeld, T., Grosu, AL. (eds) New Technologies in Radiation Oncology. Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-29999-8_25

Download citation

  • DOI: https://doi.org/10.1007/3-540-29999-8_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00321-2

  • Online ISBN: 978-3-540-29999-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics