Skip to main content

Control of Breathing Motion: Techniques and Models (Gated Radiotherapy)

  • Chapter
New Technologies in Radiation Oncology

Part of the book series: Medical Radiology ((Med Radiol Radiat Oncol))

  • 3375 Accesses

24.7 Conclusion

For continued clinical gains in the practice of radiotherapy, management of breathing motion is essential. The problem of organ motion in radiotherapy is complex; thus, interventions to reduce organ-motion-related uncertainties require effort, expertise, and collaboration from many disciplines. The application of image-guidance techniques, i.e., imageguided radiotherapy, will play an increasing important role in developing new and improved delivery techniques, i.e., adaptive radiotherapy. With some anecdotal clinical evidence and many potentially beneficial but unproven technologies under development and on the horizon, it is essential to place equal emphasis on the planning and implementation of prospective clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adler JR Jr, Chang SD, Murphy MJ et al. (1997) The Cyberknife: a frameless robotic system for radiosurgery. Stereotact Funct Neurosurg 69:124–128

    PubMed  Google Scholar 

  • Adler JR Jr, Murphy MJ, Chang SD et al. (1999) Image-guided robotic radiosurgery. Neurosurgery 44:1299–1306

    PubMed  Google Scholar 

  • Allen AM, Siracuse KM, Hayman JA et al. (2004) Evaluation of the influence of breathing on the movement and modeling of lung tumors. Int J Radiat Oncol Biol Phys 58:1251–1257

    Article  PubMed  Google Scholar 

  • Aruga T, Itami J, Aruga M et al. (2000) Target volume definition for upper abdominal irradiation using CT scans obtained during inhale and exhale phases. Int J Radiat Oncol Biol Phys 48:465–469

    Article  PubMed  CAS  Google Scholar 

  • Axelsonn P, Johnsson R, Stromqvist B (1996) Mechanics of the external fixation test an the lumbar spine: a roentgen stereophotogrammetric analysis. Spine 21:330–333

    Google Scholar 

  • Balter JM, Ten Haken RK, Lawrence TS et al. (1996) Uncertainties in CT-based treatment plans due to patient breathing. Int. J. Radiation Oncology Biol. Phys. 36:167–174

    Article  CAS  Google Scholar 

  • Balter JM, Lam KL, McGinn CJ et al. (1998) Improvement of CT-based treatment-planning models of abdominal targets using static exhale imaging. Int. J. Radiation Oncology Biol. Phys. 41:939–943

    Article  CAS  Google Scholar 

  • Balter JM, Dawson LA, Kazanijian S et al. (2001) Determination of ventilatory liver movement via radiographic evaluation of diaphragm position, Int. J. Radiation Oncology Biol. Phys. 51:267–270

    CAS  Google Scholar 

  • Baroni G, Ferrigno G, Orecchia R et al. (2000) Real-time three-dimensional motion analysis for patient positioning verification. Radiother Oncol 54:21–7

    Article  PubMed  CAS  Google Scholar 

  • Berbeco RI, Jiang SB, Sharp GC et al. (2004) Integrated radiotherapy imaging system (IRIS): design considerations of tumour tracking with linac gantry-mounted diagnostic X-ray systems with flat-panel detectors. Phys Med Biol 49:243–255

    Article  PubMed  Google Scholar 

  • Blomgren H, Lax I, Naslund I et al. (1995) Stereotactic high dose fraction radiation therapy of extracranial tumors using an accelerator. Clinical experience of the first thirtyone patients. Acta Oncol 34:861–870

    PubMed  CAS  Google Scholar 

  • Blomgren H, Lax I, Goranson H et al. (1999) Radiosurgery for tumors in the body: clinical experience using a new method. J Radiosurg 2:239–245

    Google Scholar 

  • Bortfeld T, Jokivarsi K, Goitein M et al. (2002) Effects of intrafraction motion on IMRT dose delivery: statistical analysis and simulation. Phys Med Biol 47:2203–2220

    Article  PubMed  Google Scholar 

  • Bova FJ, Buatti JM, Friedman WA et al. (1997) The University of Florida frameless high-precision stereotactic radiotherapy system. Int J Radiat Oncol Biol Phys 38:875–882

    Article  PubMed  CAS  Google Scholar 

  • Brugmans MJ, van der Horst A, Lebesque JV et al. (1999) Beam intensity modulation to reduce the field sizes for conformal irradiation of lung tumors: a dosimetric study. Int J Radiat Oncol Biol Phys 43:893–904

    Article  PubMed  CAS  Google Scholar 

  • Carman AB, Milburn PD (1997) Conjugate imagery in the automated reproduction of three dimensional coordinates from two dimensional coordinate data. J Biomech 30:733–736

    Article  PubMed  CAS  Google Scholar 

  • Chen QS, Weinhous MS, Deibel FC et al. (2001) Fluoroscopic study of tumor motion due to breathing: facilitating precise radiation therapy for lung cancer patients. Med Phys 28:1850–1856

    PubMed  CAS  Google Scholar 

  • De Koste JRV, Lagerwaard FJ, Schuchhard-Schipper RH et al. (2001) Dosimetric consequences of tumor mobility in radiotherapy of stage I non-small cell lung cancer: an analysis of data generated using “slow” CT scans. Radiother Oncol 61:93–99

    Google Scholar 

  • De Koste JRV, Lagerwaard FJ, de Boer HCJ et al. (2003) Are multiple CT scans required for planning curative radiotherapy in lung tumors of the lower lobe? Int J Radiat Oncol Biol Phys 55:1394–1399

    PubMed  Google Scholar 

  • Dhanantwari AC, Stergiopoulos S, Iakovidis I (2001a) Correcting organ motion artifacts in X-ray CT medical imaging systems by adaptive processing. I. Theory Med Phys 28:1562–1576

    CAS  Google Scholar 

  • Dhanantwari AC, Stergiopoulos S, Zamboglou N et al. (2001b) Correcting organ motion artifacts in X-ray CT systems based on tracking of motion phase by the spatial overlap correlator. II. Experimental study. Med Phys 28:1577–1596

    PubMed  CAS  Google Scholar 

  • Duan J, Shen S, Fiveash JB et al. (2003) Dosimetric effect of respiration-gated beam on IMRT delivery. Med Phys 30:2241–2252

    Article  PubMed  Google Scholar 

  • Ekberg L, Holmberg O, Wittgren L et al. (1998) What margins should be added to the clinical target volume in radiotherapy treatment planning for lung cancer? Radiother Oncol 48:71–77

    Article  PubMed  CAS  Google Scholar 

  • Farre R, Montserrat JM, Rotget M et al. (1998) Accuracy of thermistors and thermocouples as flow-measuring devices for detecting hypopnoeas. Eur Respir J 11:179–182

    PubMed  CAS  Google Scholar 

  • Frazier RC, Vicini FA, Sharpe MB et al. (2004) Impact of breathing motion on whole breast radiotherapy: a dosimetric analysis using active breathing control. Int J Radiat Oncol Biol Phys 58:1041–1047

    Article  PubMed  Google Scholar 

  • Ford EC, Mageras GS, Yorke E et al. (2002) Evaluation of respiratory movement during gated radiotherapy using film and electronic portal imaging. Int J Radiat Oncol Biol Phys 52:522–531

    Article  PubMed  CAS  Google Scholar 

  • Ford EC, Mageras GS, Yorke E et al. (2003) Respiration-correlated spiral CT: a method of measuring respiratoryinduced anatomic motion for radiation treatment planning. Med Phys 30:88–97

    PubMed  CAS  Google Scholar 

  • George R, Keall P, Chung T et al. (2004) Dynamic multileaf collimation and three-dimensional verification in IMRT. In: Yi BY, Ahn SD, Choi EK, Ha SW (eds) The use of computers in radiation therapy. Jeong Publishing, Seoul, pp 437–441

    Google Scholar 

  • Giraud P, De Rycke Y, Dubray B et al. (2001) Conformal radiotherapy (CRT) planning for lung cancer: analysis of intrathoracic organ motion during extreme phases of breathing. Int J Radiat Oncol Biol Phys 51:1081–1092

    PubMed  CAS  Google Scholar 

  • Hanley J, Debois MM, Mah D et al. (1999) Deep inspiration breath-hold technique for lung tumors: the potential value of target immobilization and reduced lung density in dose escalation. Int J Radiat Oncol Biol Phys 45:603–611

    Article  PubMed  CAS  Google Scholar 

  • Herfarth KK, Debus J, Lohr F et al. (2000) Extracranial stereotactic radiation therapy: set-up accuracy of patients treated for liver metastases. Int J Radiat Oncol Biol Phys 46:329–335

    Article  PubMed  CAS  Google Scholar 

  • Hugo GD, Agazaryan N, Solberg TD (2002) An evaluation of gating window size, delivery method, and composite field dosimetry of respiratory-gated IMRT. Med Phys 29:2517–2525

    Article  PubMed  Google Scholar 

  • Hugo GD, Agazaryan N, Solberg TD (2003) The effects of tumor motion on planning and delivery of respiratorygated IMRT. Med Phys 30:1052–1066

    Article  PubMed  Google Scholar 

  • Inada T, Tsuji H, Hayakawa Y et al. (1992) Proton irradiation synchronized with respiratory cycle. Nippon Acta Radiol 52:1161–1167

    PubMed  CAS  Google Scholar 

  • Intensity Modulated Radiation Therapy Collaborative Working Group (2001) Intensity-modulated radiotherapy: current status and issues of interest. Int J Radiat Oncol Biol Phys 51:880–914

    Google Scholar 

  • Jiang SB, Pope C, Al Jarrah MK et al. (2003) An experimental investigation on intra-fractional organ motion effects in lung IMRT treatments. Phys Med Biol 48:1773–1784

    Article  PubMed  Google Scholar 

  • Johnson CA, Keltner JL, Krohn MA et al. (1979) Photogrammetry of the optic disc in glaucoma and ocular hypertension with simultaneous stereo photography. Invest Ophthal Vis Sci 18:1252–1263

    PubMed  CAS  Google Scholar 

  • Keall PJ, Kini VR, Vedam SS et al. (2001) Motion adaptive Xray therapy: a feasibility study. Phys Med Biol 46:1–10

    PubMed  CAS  Google Scholar 

  • Keall PJ, Kini VR, Vedam SS et al. (2002) Potential radiotherapy improvements with respiratory gating. Australas Phys Eng Sci Med 25:1–6

    Article  PubMed  CAS  Google Scholar 

  • Keall PJ, Starkschall G, Shukla H et al. (2004) Acquiring 4D thoracic CT scans using a multislice helical method. Phys Med Biol 49:2053–2067

    PubMed  CAS  Google Scholar 

  • Kearfoot K, Juang RJ, Marzke MW (1993) Implementation of digital stereo imaging for analysis of metaphyses and joints in skeletal collections. Med Biol Eng Computing 31:149–156

    Google Scholar 

  • Kini VR, Keall PJ, Vedam SS et al. (2000) Preliminary results from a study of a respiratory motion tracking system: underestimation of target volume with conventional CT simulation. Int J Radiat Oncol Biol Phys 48:164

    Article  Google Scholar 

  • Kini VR, Vedam SS, Keall PJ et al. (2003) Patient training in respiratory-gated radiotherapy. Med Dosim 28:7–11

    Article  PubMed  Google Scholar 

  • Kitamura K, Shirato H, Seppenwoolde Y et al. (2002a) Three-dimensional intrafractional movement of the prostate measured during real-time tumor-tracking radiotherapy in supine and prone treatment positions. Int J Radiat Oncol Biol Phys 53:1117–1123

    Article  PubMed  Google Scholar 

  • Kitamura K, Shirato H, Seppenwoolde Y et al. (2002b) Three-dimensional intrafractional movement of prostate measured during real-time tumor-tracking radiotherapy in supine and prone treatment positions. Int J Radiat Oncol Biol Phys 53:1117–1123

    Article  PubMed  Google Scholar 

  • Kitamura K, Shirato H, Shimizu S et al. (2002c) Registration accuracy and possible migration of internal fiducial gold marker implanted in prostate and liver treated with realtime tumor-tracking radiation therapy (RTRT). Radiother Oncol 62:275–281

    Article  PubMed  Google Scholar 

  • Kitamura K, Shirato H, Seppenwoolde Y et al. (2003) Tumor location, cirrhosis, and surgical history contribute to tumor movement in the liver, as measured during stereotactic irradiation using a real-time tumor-tracking radiotherapy system. Int J Radiat Oncol Biol Phys 56:221–228

    Article  PubMed  Google Scholar 

  • Ko Y, Yi B, Ahn S et al. (2004) Immobilization effect of air injected blanket for abdomen fixation. In: Yi BY, Ahn SD, Choi EK, Ha SW (eds) The use of computers in radiation therapy. Jeong Publishing, Seoul, pp 421–423

    Google Scholar 

  • Kubo HD, Hill BC (1996) Respiration gated radiotherapy treatment: a technical study. Phys Med Biol 41:83–91

    Article  PubMed  CAS  Google Scholar 

  • Kubo HD, Wang L (2000) Compatibility of Varian 2100C gated operations with enhanced dynamic wedge and IMRT dose delivery. Med Phys 27:1732–1738

    PubMed  CAS  Google Scholar 

  • Kubo HD, Len PM, Minohara S et al. (2000) Breathing-synchronized radiotherapy program at the University of California Davis Cancer Center. Med Phys 27:346–353

    PubMed  CAS  Google Scholar 

  • Kwa SLS, Lebesque JV, Theuws JCM et al. (1998) Radiation pneumonitis as a function of meal lung dose: an analysis of pooled data of 540 patients. Int J Radiat Oncol Biol Phys 42:1–9

    Article  PubMed  CAS  Google Scholar 

  • Lagerwaard FJ, de Koste JRV, Nijssen-Visser MRJ et al. (2001) Multiple “slow” CT scans for incorporating lung tumor mobility in radiotherapy planning. Int J Radiat Oncol Biol Phys 51:932–937

    Article  PubMed  CAS  Google Scholar 

  • Lawrence TS, Robertson JM, Anscher MS et al. (1995) Hepatic toxicity resulting from cancer treatment. Int J Radiat Oncol Biol Phys 31:1237–1248

    PubMed  CAS  Google Scholar 

  • Lax I, Blomgren H, Naslund I et al. (1994) Stereotactic radiotherapy of malignancies in the abdomen. Methodological aspects. Acta Oncol 33:677–683

    Article  PubMed  CAS  Google Scholar 

  • Lindemann J, Leiacker R, Rettinger G et al. (2002) Nasal mucosal temperature during respiration. Clin Otolaryngol 27:135–139

    Article  PubMed  CAS  Google Scholar 

  • Low DA, Harms WB, Mutic S et al. (1998) A technique for the quantitative evaluation of dose distributions. Med Phys 25:656–661

    Article  PubMed  CAS  Google Scholar 

  • Low D, Wahab S, El Naqa I et al. (2003a) Four-dimensional computed tomography using a 16-slice scanner. Med Phys 30:1506

    Google Scholar 

  • Low D, Nystrom M, Kalinin E et al. (2003b) A method for the reconstruction of four-dimensional synchronized CT scans acquired during free breathing. Med Phys 30:1254–1263

    PubMed  Google Scholar 

  • Lu W, Mackie TR (2002) Tomographic motion detection and correction directly in sinogram space. Phys Med Biol 47:1267–1284

    Article  PubMed  Google Scholar 

  • Lujan AE, Larsen EW, Balter JM et al. (1999) A method for incorporating organ motion due to breathing into 3D dose calculations. Med Phys 26:715–720

    PubMed  CAS  Google Scholar 

  • Mageras GS, Yorke E (2004) Deep inspiration breath hold and respiratory gating strategies for reducing organ motion in radiation treatment. Semin Radiat Oncol 14:65–75

    Article  PubMed  Google Scholar 

  • Mageras GS, Yorke E, Rosenzweig K et al. (2001) Fluoroscopic evaluation of diaphragmatic motion reduction with a respiratory gated radiotherapy system. J Appl Clin Med Phys 2:191–200

    Article  PubMed  CAS  Google Scholar 

  • Mah D, Hanley J, Rosenzweig KE et al. (2000) Technical aspects of the deep inspiration breath-hold technique in the treatment of thoracic cancer. Int J Radiat Oncol Biol Phys 48:1175–1185

    Article  PubMed  CAS  Google Scholar 

  • Marks MK, South M, Carter BG (1995) Measurement of respiratory rate and timing using a nasal thermocouple. J Clin Monit 11:159–164

    Article  PubMed  CAS  Google Scholar 

  • Martel MK, Ten Haken RK, Hazuka MB et al. (1999) Estimation of tumor control probability model parameters from 3-D dose distributions of non-small cell lung cancer patients. Lung Cancer 24:31–37

    Article  PubMed  CAS  Google Scholar 

  • Mehta M, Scrimger R, Mackie R et al. (2001) A new approach to dose escalation in non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 49:23–33

    PubMed  CAS  Google Scholar 

  • Menke M, Hirschfeld F, Mack T et al. (1994) Stereotactically guided fractionated radiotherapy: technical aspects. Int J Radiat Oncol Biol Phys 29:1147–1155

    PubMed  CAS  Google Scholar 

  • Minohara S, Kanai T, Endo M et al. (2000) Respiratory gated irradiation system for heavy-ion radiotherapy. Int J Radiat Oncol Biol Phys 47:1097–1103

    Article  PubMed  CAS  Google Scholar 

  • Mori S, Endo M, Tsunoo T et al. (2004) Physical performance evaluation of a 256-slice CT-scanner for four-dimensional imaging. Med Phys 31:1348–1356

    Article  PubMed  Google Scholar 

  • Morita K, Fuwa N, Suzuki M et al. (1997) Radical radiotherapy for medically inoperable non-small cell lung cancer in clinical stage I: a retrospective analysis of 149 patients. Radiother Oncol 42:31–36

    Article  PubMed  CAS  Google Scholar 

  • Murphy MJ, Cox RS (1996) The accuracy of dose localization for an image-guided frameless radiosurgery system. Med Phys 23:2043–2049

    Article  PubMed  CAS  Google Scholar 

  • Murphy MJ, Adler JR Jr, Bodduluri M et al. (2000) Imageguided radiosurgery for the spine and pancreas. Comput Aided Surg 5:278–288

    Article  PubMed  CAS  Google Scholar 

  • Murphy MJ, Martin D, Whyte R et al. (2002) The effectiveness of breath-holding to stabilize lung and pancreas tumors during radiosurgery. Int J Radiat Oncol Biol Phys 53:475–482

    Article  PubMed  Google Scholar 

  • Nagata Y, Negoro Y, Aoki T et al. (2003) Clinical outcomes of 3D conformal hypofractionated single high-dose radiotherapy for one or two lung tumors using a stereotactic body frame. Int J Radiat Oncol Biol Phys 52:1041–1046

    Google Scholar 

  • Narayan S, Henning GT, Ten Haken RK et al. (2004) Results following treatment to doses of 92.4 or 102.9 Gy on a phase I dose escalation study for non-small cell lung cancer. Lung Cancer 44:79–88

    Article  PubMed  Google Scholar 

  • Negoro Y, Nagata Y, Aoki T et al. (2001) The effectiveness of an immobilization device in conformal radiotherapy for lung tumor: reduction of respiratory tumor movement and evaluation of the daily setup accuracy. Int J Radiat Oncol Biol Phys 50:889–898

    Article  PubMed  CAS  Google Scholar 

  • Neicu T, Shirato H, Seppenwoolde Y et al. (2003) Synchronized moving aperture radiation therapy (SMART): average tumour trajectory for lung patients. Phys Med Biol 48:587–598

    Article  PubMed  Google Scholar 

  • Norman RG, Ahmed MM, Walsleben TA et al. (1997) Detection of respiratory events during NPSG: nasal cannula/ pressure sensor versus thermistor. Sleep 20:1175–1184

    PubMed  CAS  Google Scholar 

  • Ohara K, Okumura T, Akisada M et al. (1989) Irradiation synchronized with respiration gate. Int J Radiat Oncol Biol Phys 17:853–857

    PubMed  CAS  Google Scholar 

  • Ozhasoglu C, Murphy MJ (2002) Issues in respiratory motion compensation during external-beam radiotherapy. Int J Radiat Oncol Biol Phys 52:1389–1399

    Article  PubMed  Google Scholar 

  • Pan T, Lee T-Y, Rietzel E et al. (2004) 4D-CT imaging of a volume influenced by respiratory motion on multi-slice CT. Med Phys 31:333–340

    Article  PubMed  Google Scholar 

  • Peterson B, Palmerud G (1996) Measurement of upper extremity orientation by video stereometry system. Med Biol Eng Computing 34:149–154

    CAS  Google Scholar 

  • Ramsey CR, Cordrey IL, Oliver AL (1999) comparison of beam characteristics for gated and nongated clinical Xray beams. Med Phys 26:2086–2091

    PubMed  CAS  Google Scholar 

  • Reed GB, Cox AJ (1966) The human liver after radiation injury. Am J Pathol 48:597–612

    PubMed  Google Scholar 

  • Remouchamps VM, Letts N, Vicini FA et al. (2003a) Initial clinical experience with moderate deep-inspiration breath hold using an active breathing control device in the treatment of patients with left-sided breast cancer using external beam radiation therapy. Int J Radiat Oncol Biol Phys 56:704–715

    PubMed  Google Scholar 

  • Remouchamps VM, Letts N, Yan D et al. (2003b) Three-dimensional evaluation of intra-and interfraction immobilization of lung and chest wall using active breathing control: a reproducibility study with breast cancer patients. Int J Radiat Oncol Biol Phys 57:968–978

    Article  PubMed  Google Scholar 

  • Remouchamps VM, Vicini FA, Sharpe MB et al. (2003c) Significant reductions in heart and lung doses using deep inspiration breath hold with active breathing control and intensity-modulated radiation therapy for patients treated with locoregional breast irradiation. Int J Radiat Oncol Biol Phys 55:392–406

    Article  PubMed  Google Scholar 

  • Ries LAG, Eisner MP, Kosary CL et al. (eds) (2004) NCI Surveillance, Epidemiology and End Results. SEER Cancer Statistics Review, 1975-2001, National Cancer Institute. Bethesda, Maryland

    Google Scholar 

  • Rietzel E, Chen GT, Doppke KP et al. (2003) 4D computed tomography for treatment planning. Int J Radiat Oncol Biol Phys 57:S232–S233

    Article  Google Scholar 

  • Ritchie CJ, Hsieh J, Gard MF et al. (1994) Predictive respiratory gating: a new method to reduce motion artifacts on CT scans. Radiology 190:847–852

    PubMed  CAS  Google Scholar 

  • Robertson JM, Lawrence TS, Andrews JC et al. (1997a) Longterm results of hepatic artery fluorodeoxyuridine and conformal radiation therapy for primary hepatobiliary cancers. Int J Radiat Oncol Biol Phys 37:325–330

    PubMed  CAS  Google Scholar 

  • Robertson JM, Ten Haken RK, Hazuka MB et al. (1997b) Dose escalation for non-small cell lung cancer using conformal radiation therapy. Int J Radiat Oncol Biol Phys 37:1079–1085

    PubMed  CAS  Google Scholar 

  • Roof KS, Fidias P, Lynch TJ et al. (2003) Radiation dose escalation in limited-stage small-cell lung cancer. Int J Radiat Oncol Biol Phys 57:701–708

    Article  PubMed  Google Scholar 

  • Rosenzweig KE, Hanley J, Mah D et al. (2000) The deep inspiration breath-hold technique in the treatment of inoperable non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 48:81–87

    PubMed  CAS  Google Scholar 

  • Ross C, Hussey DH, Pennington EC et al. (1990) Analysis of movement on intrathoracic neoplasm using ultrafast computerized tomography. Int J Radiat Oncol Biol Phys 18:671–677

    PubMed  CAS  Google Scholar 

  • Ruschin M, Sixel KE (2002) Integration of digital fluoroscopy with CT-based radiation therapy planning of lung tumors. Med Phys 29:1698–1709

    Article  PubMed  Google Scholar 

  • Sang-Wook Lee S, Eun Kyung Choi EK, Heon Joo Park HJ et al. (2003) Stereotactic body frame based fractionated radiosurgery on consecutive days for primary or metastatic tumors in the lung. Lung Cancer 40:309–315

    PubMed  Google Scholar 

  • Sato M, Uematsu M, Yamamoto F et al. (1998) Feasibility of frameless stereotactic high-dose radiation therapy for primary or metastatic liver cancer. J Radiosurg 1:233–240

    Google Scholar 

  • Schlegel W, Pastyr O, Bortfeld T et al. (1993) Stereotactically guided fractionated radiotherapy: technical aspects. Radiother Oncol 29:197–204

    Article  PubMed  CAS  Google Scholar 

  • Schweikard A, Glosser G, Bodduluri M et al. (2000) Robotic motion compensation for respiratory movement during radiosurgery. Comput Aided Surg 5:263–277

    PubMed  CAS  Google Scholar 

  • Selvik G (1990) Roentgen stereophotogrammetric analysis. Acta Radiol 31:113–126

    Article  PubMed  CAS  Google Scholar 

  • Seppenwoolde Y, Shirato H, Kitamura K et al. (2002) Precise and real-time measurement of 3D tumor motion in lung due to breathing and heartbeat, measured during radiotherapy. Int J Radiat Oncol Biol Phys 53:822–834

    Article  PubMed  Google Scholar 

  • Shimizu S, Shirato H, Ogura S et al. (2001) Detection of lung tumor movement in real-time tumor-tracking radiotherapy. Int J Radiat Oncol Biol Phys 51:304–310

    Article  PubMed  CAS  Google Scholar 

  • Shirato H, Harada T, Harabayashi T et al. (2003) Feasibility of insertion/implantation of 2.0-mm-diameter gold internal fiducial markers for precise setup and real-time tumor tracking in radiotherapy. Int J Radiat Oncol Biol Phys 56:240–247

    Article  PubMed  Google Scholar 

  • Shirato H, Shimizu S, Kitamura K et al. (2000a) Four-dimensional treatment planning and fluoroscopic real-time tumor tracking radiotherapy for moving tumor. Int J Radiat Oncol Biol Phys 48:435–442

    PubMed  CAS  Google Scholar 

  • Shirato H, Shimizu S, Kunieda T et al. (2000b) Physical aspects of a real-time tumor-tracking system for gated radiotherapy. Int J Radiat Oncol Biol Phys 48:1187–1195

    PubMed  CAS  Google Scholar 

  • Sixel K, Ruschin M, Cheung PC (2001) Integration of digital fluoroscopy with CT simulation: patient specific planning target volumes. Int J Radiat Oncol Biol Phys 51(S1):122–123

    Google Scholar 

  • Sixel KE, Ruschin M, Tirona R et al. (2003) Digital fluoroscopy to quantify lung tumor motion: potential for patientspecific planning target volumes. Int J Radiat Oncol Biol Phys 57:717–723

    Article  PubMed  Google Scholar 

  • Solberg TD, Paul TJ, Agazaryan N et al. (2000) Dosimetry of gated intensity modulated radiotherapy. In: Schlegel W, Bortfeld T (eds) The use of computers in radiation therapy. Springer, Berlin Heidelberg New York, pp 286–288

    Google Scholar 

  • Stevens CW, Munden RF, Forster KM et al. (2001) Respiratory-driven lung tumor motion is independent of tumor size, tumor location, and pulmonary function. Int J Radiat Oncol Biol Phys 51:62–68

    PubMed  CAS  Google Scholar 

  • Stromberg JS, Sharpe MB, Kim LH et al. (2000) Active breathing control (ABC) for Hodgkin’s disease: reduction in normal tissue irradiation with deep inspiration and implications for treatment. Int J Radiat Oncol Biol Phys 48:797–806

    Article  PubMed  CAS  Google Scholar 

  • Stroom JC, Heijmen BJ (2002) Geometrical uncertainties, radiotherapy planning margins, and the ICRU-62 report. Radiother Oncol 64:75–83

    Article  PubMed  Google Scholar 

  • Suit HD, Becht J, Leong J et al. (1988) Potential for improvement in radiation therapy. Int J Radiat Oncol Biol Phys 14:777–786

    PubMed  CAS  Google Scholar 

  • Taguchi K (2003) Temporal resolution and the evaluation of candidate algorithms for four-dimensional CT. Med Phys 30:640–650

    Article  PubMed  Google Scholar 

  • Ten Haken RK, Balter JM, Marsh LH et al. (1997) Potential benefits of eliminating planning target volume expansions for patient breathing in the treatment of liver tumors. Int J Radiat Oncol Biol Phys 38:613–617

    PubMed  Google Scholar 

  • Tsunashima Y, Sakae T, Shioyama Y et al. (2004) Correlation between the respiratory waveform measured using a respiratory sensor and 3D tumor motion in gated radiotherapy. Int J Radiat Oncol Biol Phys. 60:951–958

    Article  PubMed  Google Scholar 

  • Vedam SS, Keall PJ, Kini VR et al. (2001) Determining parameters for respiration-gated radiotherapy. Med Phys 28:2139–2146

    Article  PubMed  CAS  Google Scholar 

  • Vedam SS, Keall PJ, Kini VR et al. (2003) Acquiring a fourdimensional computed tomography dataset using an external respiratory signal. Phys Med Biol 48:45–62

    Article  PubMed  CAS  Google Scholar 

  • Vedam SS, Keall PJ, Docef A et al. (2004) Predicting respiratory motion for four-dimensional radiotherapy. Med Phys 31:2274–2283

    Article  PubMed  CAS  Google Scholar 

  • Verellen D, Soete G, Linthout N et al. (2003) Quality assurance of a system for improved target localization and patient set-up that combines real-time infrared tracking and stereoscopic X-ray imaging. Radiother Oncol 67:129–141

    Article  PubMed  Google Scholar 

  • Wagman R, Yorke E, Ford E et al. (2003) Respiratory gating for liver tumors: use in dose escalation. Int J Radiat Oncol Biol Phys 55:659–668

    Article  PubMed  Google Scholar 

  • Wahab S, Low D, El Naqa I et al. (2003) Use of four-dimensional computed tomography in conformal therapy planning for lung cancer. Med Phys 30:1364

    Google Scholar 

  • Wang LT, Solberg TD, Medin PM et al. (2001) Infrared patient positioning for stereotactic radiosurgery of extracranial tumors. Comput Biol Med 31:101–111

    PubMed  CAS  Google Scholar 

  • Waters K, Terzopoulos D (1992) The computer synthesis of expressive faces. Philos Trans R Soc London Series B Biol Sci 335:87–93

    CAS  Google Scholar 

  • Whyte RI, Crownover R, Murphy MJ et al. (2003) Stereotactic radiosurgery for lung tumors: preliminary report of a phase I trial. Ann Thorac Surg 75:1097–1101

    Article  PubMed  Google Scholar 

  • Willett CG, Linggood RM, Stracher MA et al. (1987) The effect of the respiratory cycle on mediastinal and lung dimensions in Hodgkin’s disease. Implications for radiotherapy gated to respiration. Cancer 60:1232–1237

    PubMed  CAS  Google Scholar 

  • Willner J, Baier K, Caragiani E et al. (2002) Dose, volume, and tumor control predictions in primary radiotherapy of non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 52:382–389

    Article  PubMed  Google Scholar 

  • Wilson EM, Williams FJ, Lyn BE et al. (2003) Validation of active breathing control in patients with non-small-cell lung cancer to be treated with CHARTWEL. Int J Radiat Oncol Biol Phys 57:864–874

    PubMed  Google Scholar 

  • Wong JW, Sharpe MB, Jaffray DA et al. (1997) The use of active breathing control (ABC) to minimize breathing motion during radiation therapy. Int J Radiat Oncol Biol Phys 39:164 (abstract)

    Google Scholar 

  • Wong JW, Sharpe MB, Jaffray DA et al. (1999) The use of active breathing control (ABC) to reduce margin for breathing motion. Int J Radiat Oncol Biol Phys 44:911–919

    PubMed  CAS  Google Scholar 

  • Wulf J, Hädinger U, Oppitz U et al. (2001) Stereotactic radiotherapy of targets in the lung and liver. Strahlenther Onkol 177:645–655

    PubMed  CAS  Google Scholar 

  • Xiong C, Sjoberg BJ, Sveider P et al. (1993) Problems in the timing of respiration with the nasal thermistor technique. J Am Soc Echocardiogr 6:210–216

    PubMed  CAS  Google Scholar 

  • Yu CX, Jaffray DA, Wong JW (1998) The effects of intra-fraction organ motion on the delivery of dynamic intensity modulation. Phys Med Biol 43:91–104

    PubMed  CAS  Google Scholar 

  • Zhang T, Jeraj R, Keller H et al. (2004) Treatment plan optimization incorporating respiratory motion. Med Phys 31:1576–1586

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Solberg, T.D., Wink, N., Tenn, S., Kriminski, S., Hugo, G., Agazaryan, N. (2006). Control of Breathing Motion: Techniques and Models (Gated Radiotherapy). In: Schlegel, W., Bortfeld, T., Grosu, AL. (eds) New Technologies in Radiation Oncology. Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-29999-8_24

Download citation

  • DOI: https://doi.org/10.1007/3-540-29999-8_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00321-2

  • Online ISBN: 978-3-540-29999-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics