Advertisement

X-IMRT

  • Simeon Nill
  • Ralf Hinderer
  • Uwe Oelfke
Part of the Medical Radiology book series (MEDRAD)

Keywords

Radiat Oncol Biol Phys Intensity Modulate Radiation Therapy Leaf Width Helical Tomotherapy Dose Delivery 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Biggs P, Capalucci J, Russell M (1991) Comparison of the penumbra between focused and nondivergent blocks: implications for multileaf collimators. Med Phys 18:753–758PubMedCrossRefGoogle Scholar
  2. Boesecke R, Becker G, Alandt K, Pastyr O, Doll J, Sclegel W, Lorenz WJ (1991) Modification of a three-dimensional treatment planning system for the use of multileaf collimators in conformation readiotherapy. Radiother Oncol 21:261–268PubMedCrossRefGoogle Scholar
  3. Bortfeld T, Boyer AL, Schlegel W, Kahler DL, Waldron TJ (1994) Realization and verification of three-dimensional conformal radiotherapy with modulated fields. Int J Radiat Oncol Biol Phys 30:899–908PubMedGoogle Scholar
  4. Bortfeld T, Oelfke U, Nill S (2000) What is the optimum leaf width of a multifleaf collimator? Med Phys 27:2494–2502PubMedCrossRefGoogle Scholar
  5. Boyer Al, Yu CX (1999) Intensity-modulated radiation therapy with dynamic multileaf collimators. Semin Radiat Oncol 9:48–59PubMedGoogle Scholar
  6. Carol M, Grant WH III, Pavord D, Eddy P, Targovnik HS, Butler B, Woo S, Figura J, Onufrey V, Grossman R, Selkar R (1996) Initial clinical experience with the Peacock intensity modulation of a 3-D conformal radiation therapy system. Stereotact Funct Neurosurg 66:30–34PubMedGoogle Scholar
  7. Chang SX, Cullip TJ, Deschesne KM, Miller EP, Rosenman JG (2004) Compensators: an alternative IMRT delivery technique. J Appl Clin Med Phys 5:15–36PubMedGoogle Scholar
  8. Convery DI, Webb S (1998) Generation of discrete beamintensity modulation by dynamic multileaf collimation under minimum leaf separation constraints. Phys Med Biol 43:2521–2538PubMedCrossRefGoogle Scholar
  9. Cosgrove V, Jahn U, Pfaender M, Bauer S, Budach V, Wurm R (1999) Commissioning of a micro multi-leaf collimator and planning system for stereotactic radiosurgery. Radiother Oncol 50:325–336PubMedCrossRefGoogle Scholar
  10. Chui CS, Chanf MF, Yorke E, Spirou S, Ling CC (2001) Delivery of intensity-modulated radiation therapy with a conventional multileaf collimator: comparison of dynamic and segmental methods. Med Phys 28:2441–2449PubMedCrossRefGoogle Scholar
  11. Eisbruch A, Kim HM, Terrell JE, Marsh LH, Dawson LA, Ship JA (2001) Xerostomia and its predictors following parotidsparing irradiation of head-and-neck cancer. Int J Radiat Oncol Biol Phys 50:695–704PubMedCrossRefGoogle Scholar
  12. Ellis F, Hall EJ, Oliver R (1959) A compensator for variations in tissue thickness for high energy beams. Br J Radiol 32:421–422PubMedGoogle Scholar
  13. Fiveash JB, Murshed H, Duan J, Hyatt M, Caranto J, Bonner JA, Popple RA (2002) Effect of multileaf collimator leaf width on physical dose distributions in the treatment of CNS and head and neck neoplasms with intensity modulated radiation therapy. Med Phys 29:1116–1119PubMedCrossRefGoogle Scholar
  14. Hall EJ, Wuu CS (2003) Radiation-induced second cancers: the impact of 3D-CRT and IMRT. Int J Radiat Oncol Biol Phys 56:83–88PubMedCrossRefGoogle Scholar
  15. Hartmann GH, Föhlisch F (2002) Dosimetric characterization of a new miniature multileaf collimator. Phys Med Biol 47:N171–N177PubMedCrossRefGoogle Scholar
  16. Hug MS, Das IJ, Steinberg T, Galvin JM (2002) A dosimetric comparison of various multileaf collimators. Phys Med Biol 47:N159–N170Google Scholar
  17. Jiang SB (1998) On modulator design for photon beam intensity-modulated conformal therapy. Med Phys 25:668–675PubMedGoogle Scholar
  18. Jordan TF, Williams PC (1994) The design and performance characteristics of a multileaf collimator. Phys Med Biol 39:231–251PubMedCrossRefGoogle Scholar
  19. Kamath S, Sahni S, Ranka S, Li J, Palta J (2004) Comparison of step-and-shoot leaf sequencing algorithms that eliminate tongue-and-groove effect. Phys Med Biol 49:3137–3143PubMedGoogle Scholar
  20. Lee N, Xia P, Quivey JM, Sultanem K, Poon I, Akazawa C, Akazawa P, Weinberg, Fu KK (2002) Intensity modulated radiotherapy in the treatment of nasopharyngeal carcinoma: an update of the UCSF experience. Int J Radiat Oncol Biol Phys 53:12–22PubMedGoogle Scholar
  21. LoSasso T, Chui CS, Ling CC (1998) Physical and dosimetric aspects of a multileaf collimation system used in the dynamic mode for implementing intensity modulated radiotherapy. Med Phys 25:1919–1927PubMedCrossRefGoogle Scholar
  22. Ma A, Boyer AL, Xing L, Ma CM (1998) An optimized leaf-setting algorithm for beam intensity modulation sung dynamic multileaf collimator. Phys Med Biol 43:1629–1643PubMedGoogle Scholar
  23. Ma L, Boyer A, Ma CM, Xing L (1999) Synchronizing dynamic multileaf collimators for producing two-dimensional intensity-modulated fields with minimum beam delivery time. Int J Radiat Oncol Biol Phys 44:1147–1154PubMedCrossRefGoogle Scholar
  24. Mackie TR, Holmes T, Swerdloff S, Reckwerdt P, Deasy JO, Yang J, Paliwal B, Kinsella T (1993) Tomotherapy: a new concept for the delivery of conformal radiotherapy using dynamic collimation. Med Phys 20:1709–1719PubMedCrossRefGoogle Scholar
  25. Mackie TR, Holmes TW, Reckwerdt PJ, Yang J (1995) Tomotherapy: optimized planning and delivery of radiation therapy. Int J Imaging Syst Tech 6:43–55Google Scholar
  26. Mackie TR, Balog J, Ruchala K, Shepard D, Aldridge S, Fitchard E, Reckwerdt PJ, Olivera G, McNutt TR, Metha M (1999) Tomotherapy. Semin Radiat Oncol 9:108–117PubMedGoogle Scholar
  27. Mageras GS, Mohan R, Burman C, Barset GD, Kutcher GJ (1991) Compensators for three dimensional treatment planning. Med Phys 18:133–140PubMedCrossRefGoogle Scholar
  28. Meeks S, Bova F, Kim S, Tome W, Buatti J, Friedman W (1999) Dosimetric characteristics of a double-focused miniature multileaf collimator. Med Phys 26:729–733PubMedCrossRefGoogle Scholar
  29. Münter MW, Debus J, Hof H, Nill S, Haring P, Bortfeld T, Wannenmacher M (2002) Inverse treatment planning and stereotactic intensity-modulated radiation therapy (IMRT) of the tumor and lymph node levels for nasopharyngeal carcinomas. Description of treatment technique, plan comparison, and case study. Strahlenther Onkol 178:517–523PubMedGoogle Scholar
  30. Nill S, Tücking T, Münter MW, Oelfke U (2005) Intensity modulated radiation therapy with multi leaf collimators of different leaf widths: a comparison of achievable dose distributions. Radiol Oncol 75:106–111Google Scholar
  31. Olivera GH, Shepard DM, Ruchala K, Aldridge JS, Kapatoes JM, Fitchard EE, Reckwerdt PJ, Fang G, Balog J, Zachman J and Mackie TR (1999) Tomotherapy. In: Van Dyk J (ed) Modern technology of radiation oncology. Medical Physics Publishing, Madison, WisconsinGoogle Scholar
  32. Palta J, Mackie TR (2003) (eds) Medical physics monograph 29:51–75Google Scholar
  33. Siochi A (1999) Minimizing static intensity modulation delivery time using an intensity solid paradigm. Int J Radiat Oncol Biol Phys 43:671–680PubMedCrossRefGoogle Scholar
  34. Spirou S, Chui C (1994) Generation of arbitrary intensity profiles by dynamic jaws or multileaf collimators. Med Phys 21:1031–1041PubMedCrossRefGoogle Scholar
  35. Stein J, Bortfeld T, Dorschel B, Schlegel W (1994) Dynamic Xray compensation for conformal radiotherapy by means of multileaf collimator. Radiother Oncol 32:163–173PubMedCrossRefGoogle Scholar
  36. Thilmann C, Schulz-Ertner D, Zabel A, Herfarth KK, Wannenmacher M, Debus J (2002) Intensity-modulated radiotherapy of sacral chordoma: a case report and a comparison with stereotactic conformal radiotherapy. Acta Oncol 41:395–399PubMedCrossRefGoogle Scholar
  37. Thilmann C, Sroka-Perez G, Krempien R, Hoess A, Wannenmacher M, Debus J (2004) Inversely planned intensity modulated radiotherapy of the breast including the internal mammary chain: a plan comparison study. Technol Cancer Res Treat 3:69–75PubMedGoogle Scholar
  38. Van Stanvoort J, Heijmen B (1996) Dynamic multileaf collimation without tongue-and-groove underdose effects. Phys Med Biol 41:2091–2105Google Scholar
  39. Webb S (1997) The physics of conformal radiotherapy. Advances in technology. Institute of Physics Publishing, BristolGoogle Scholar
  40. Webb S (2001) Intensity-modulated radiation therapy. Institute of Physics, Publishing, BristolGoogle Scholar
  41. Webb S, Bortfeld T, Stein J, Convery D (1996) The effect of stair-step leaf transmission on the “tongue-and-groove problem” in dynamic radiotherapy with multileaf collimator. Phys Med Biol 42, 595–202Google Scholar
  42. Xia P, Verhey LJ (1998) Multileaf collimator leaf sequencing algorithm for intensity modulated beams with multiple static segments. Med Phys 25:1424–1434PubMedCrossRefGoogle Scholar
  43. Xia P, Geis P, Xing L (1999) Physical characteristics of a miniature multileaf collimator. Med Phys 26:65–70PubMedCrossRefGoogle Scholar
  44. Zelefsky M, Fuks Z, Hunt M, Yamada Y, Marion C, Ling C, Amalos H Venkatramen ES, Leibel SA (2002) High-dose intensity modulated radiation therapy for prostate cancer: early toxicity and biochemical outcome in 772 patients. Int J Radiat Oncol Biol Phys 53:1111–1116PubMedCrossRefGoogle Scholar
  45. Zygmanski P, Kung JH, Jiang SB, Chin L (2003) Dependence of fluence errors in dynamic IMRT on leaf-positional errors varying with time and leaf number. Med Phys 30:2736–2349PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Simeon Nill
    • 1
  • Ralf Hinderer
    • 1
  • Uwe Oelfke
    • 1
  1. 1.Abteilung Medizinische Physik in der StrahlentherapieDeutsches KrebsforschungszentrumHeidelbergGermany

Personalised recommendations