Stereotactic Radiotherapy/Radiosurgery

  • Anca-Ligia Grosu
  • Peter Kneschaurek
  • Wolfgang Schlegel
Part of the Medical Radiology book series (MEDRAD)

21.7 Conclusion

Both RS and SFS have gained eminent positions in radiation oncology and have become established modalities in the treatment of cranial lesions. Most leading radiation departments offer this technique and their numbers have grown significantly in the past decade.

The LINAC RS and gamma knife RS are equivalent techniques; however, technological and physical differences between these two methods have led to some confusion. Considering the RS, comparative clinical studies have documented that both therapeutic methodologies can be used with similar results. In comparison with gamma knife, the use of LINAC technology offers the possibility of dose fractionation, which has substantial clinical implications. The quality control of the complex LINAC is higher than of gamma knife and requires a specialized team of medical physicists and radiation oncologists. On the other hand, it is undisputed that stereotactic radiation therapy with isocentric LINAC has a high potential for further developments. Examples in this direction are the introduction of computer-guided micro-multileaf collimators which allows the delivery of a conform dose distribution with only one isocenter, using static fields or dynamic arcs and the implementation of the stereotactic intensity-modulated radiotherapy. These new technologies amplify substantially the potential of the stereotactic modality.


Target Volume Planning Target Volume Dose Distribution Radiat Oncol Biol Phys Target Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Auer F, Grosu AL, Wiedenmann N et al. (2002) Stereotactic radiotherapy in patients with brain tumors: accuracy of a modified mask system. In: Kogelnik HD, Lukas P, Sedlmayer E (eds) Progress in radio-oncology, vol 7. Monduzzi Editore International Proc Division, Bologna, pp 163–168Google Scholar
  2. Becker G, Kortmann R, Kaulich TW et al. (1996) Gamma-Knife versus stereotaktische Linearbeschleunigerbestrahlung. Radiologe 36:345–353PubMedGoogle Scholar
  3. Betti O, Derechinsky VE (1983) Irradiation stereotaxique multifasceaux. Neurochirurgie 29:295–298PubMedGoogle Scholar
  4. Bortfeld TR, Boyer AL, Schlegel W et al. (1994a) Realization and verification of three-dimensional conformal radiotherapy with modulated fields. Int J Radiat Oncol Biol Phys 30:899–908PubMedGoogle Scholar
  5. Bortfeld TR, Kahler DL, Waldron TJ et al. (1994b) X-ray field compensation with multileaf collimators. Int J Radiat Oncol Biol Phys 28:723–730PubMedGoogle Scholar
  6. Brown RA (1979) Stereotactic headframe for use with CT body scanners. Invest Radiol 14:300–304PubMedGoogle Scholar
  7. Couldwell WT, Apuzzo MLJ (1990) Initial experience related to the use of the Cosman-Roberts-Wells stereotactic instrument. J Neurosurg 72:145–148PubMedGoogle Scholar
  8. Colombo F, Benedetti A, Pozza F et al. (1985) External stereotactic irradiation by linear accelerator. Neurosurgery 16:154–160PubMedGoogle Scholar
  9. Debus J, Pirzkall A, Schlegel W et al. (1999) Stereotaktische Einzeitbestrahlung (Radiochirurgie). Strahlenther Onkol 175:47–56PubMedGoogle Scholar
  10. DIN 6827-1, Protokollierung bei der medizinischen Anwendung ionisierender Strahlung. Teil 1: Therapie mit Elektronenbeschleuniger sowie Röntgen-und Gammabestrahlungseinrichtungen, Deutsches Institut für Industrie-Normung, 2001Google Scholar
  11. Engenhart R, Kimmig B, Sturm V (1989) Stereotactically guided convergent beam irradiation of solitary brain metastasis and cerebral arteriovenous malformations: In: Dyck P, Bouzaglou A (eds) Brachytherapy of brain tumors and related stereotactic treatment. Hanley and Belfus, Philadelphia, pp 119–132Google Scholar
  12. Engenhart R, Wowra B, Kimmig B et al. (1992) Stereotaktische Konvergenzbestrahlung: Aktuelle Perspektiven auf der Grundlage klinischer Ergebnisse. Strahlenther Onkol 168:245–259PubMedGoogle Scholar
  13. Gademann G, Schlegel W, Debus J et al. (1993) Fractionated stereotactically guided radiotherapy of head and neck tumors: a report on clinical use of a new system in 195 cases. Radiother Oncol 29:205–213PubMedCrossRefGoogle Scholar
  14. Gerszten PC, Ozhasoglu C, Burton SA et al. (2004) CyberKnife frameless stereotactic radiosurgery for spinal lesion: clinical experience in 125 cases. Neurosurgery 55:89–98PubMedGoogle Scholar
  15. Grosu AL, Lachner R, Wiedenmann N, Stärk S, Thamm R, Kneschaurek P, Schwaiger M, Molls M, Weber WA (2003) Validation of a method for automatic fusion of CT-and C11-Methionine-PET datasets of the brain for stereotactic radiotherapy using a LINAC. First clinical experience. Int J Radiat Oncol Biol Phys 56:1450–1463PubMedCrossRefGoogle Scholar
  16. Hall EJ, Brenner DJ (1993) The radiobiology of RS: rationale for different treatment regimes for AVMs and malignancies. Int J Radiat Oncol Biol Phys 25:381–385PubMedCrossRefGoogle Scholar
  17. Hartmann GH (ed) (1995) Quality assurance program on stereotactic radiosurgery. Springer, Berlin Heidelberg New YorkGoogle Scholar
  18. Hartmann GH, Schlegel W, Sturm V et al. (1985) Cerebral radiation surgery using moving field irradiation at a linac facility. Int J Radiat Oncol Biol Phys 11:185–192Google Scholar
  19. Heilbrun M, Roberts T, Apuzzo M et al. (1983) Preliminary experience with Brown-Roberts-Wells (BRW) computerized tomography stereotaxic guidance system. J Neurosurg 59:217–222PubMedGoogle Scholar
  20. Herfarth KK, Debus J, Lohr F et al. (2000) Extracranial stereotactic radiation therapy: set-up accuracy of patients treated for liver metastases. Int J Radiat Oncol Biol Phys 46:329–335PubMedCrossRefGoogle Scholar
  21. ICRU Report 50 (1984) Prescribing, recording and reporting photon beam therapy. ICRU, Washington, DCGoogle Scholar
  22. Khoo V, Oldham M, Adams E et al. (1999) Comparison of intensity-modulated tomotherapy with stereotactically guided conformal radiotherapy for brain tumors. Int J Radiat Oncol Biol Phys 45:415–425PubMedCrossRefGoogle Scholar
  23. Kjellberg RN, Shintani A, Frantz AG (1968) Proton beams in acromegaly. N Engl J Med 278:689–695PubMedCrossRefGoogle Scholar
  24. Kortmann RD, Becker G, Perelmouter J et al. (1999) Geometric accuracy of field alignment in fractionated stereotactic conformal radiotherapy of brain tumors. Int J Radiat Oncol Biol Phys 43:921–926PubMedCrossRefGoogle Scholar
  25. Larsson B, Leksell L, Rexed B et al. (1958) The high energy proton beam as a neurosurgical tool. Nature 182:1222–1223PubMedGoogle Scholar
  26. Larsson B, Liden K, Sorby B (1974) Irradiation of small structures through intact skull. Acta Radiol Ther Phys Biol 13:513–534Google Scholar
  27. Lawrence JH, Tobias CA, Bom JL et al. (1962) Heavy particle irradiation in neo-plasic and neurosurgical disease. J Neurosurg 19:717–722PubMedGoogle Scholar
  28. Leksell L (1951) The stereotactic method and radiosurgery of the brain. Acta Chir Scand 102:316–319PubMedGoogle Scholar
  29. Leksell L, Jernberg B (1980) Stereotaxis and tomography. A technical note. Acta Neurochir 52:1–7CrossRefGoogle Scholar
  30. Leksell L, Leksell D, Schwebel Y (1985) Stereotaxis and nuclear magnetic resonance. J Neurol Neurosurg Psychiatry 48:14–18PubMedGoogle Scholar
  31. Lindquist C (1995) Gamma Knife radiosurgery. Semin Radiat Oncol 5:197–202PubMedGoogle Scholar
  32. Lyman JT, Howard J (1977) Dosimetry and instrumentation for helium and heavy ions. Int J Radiat Oncol Biol Phys 3:81–85PubMedGoogle Scholar
  33. Mehta M, Noyes WR, Mackie TR (1995) Linear accelerator configurations for radiosurgery. Semin Radiat Oncol 5:203–212PubMedGoogle Scholar
  34. Report of Task Group 42 (1995) Radiation Therapy Committee, AAPM Report no. 54, Schell MC (Chairman), Bova FJ, Larson DA et al., published for the American Association of Physicists in Medicine by the American Institute of PhysicsGoogle Scholar
  35. Riechert T, Mundinger F (1955) Beschreibung und Anwendung eines Zielgerätes für stereotaktische Hirnoperationen. Acta Neurochir 3 (Suppl):308–337Google Scholar
  36. Schlegel W, Pastyr O, Bortfeld T et al. (1992) Computer systems and mechanical tools for stereotactically guided conformation therapy with linear accelerators. Int J Radiat Oncol Biol Phys 24:781–787PubMedGoogle Scholar
  37. Schlegel W, Pastyr O, Bortfeld T et al. (1993) Stereotactically guided fractionated radiotherapy: technical aspects. Radiother Oncol 29:197–204PubMedCrossRefGoogle Scholar
  38. Schlegel W, Pastyr O, Kubesch R et al. (1997) A computer controlled micro-multileaf-collimator for stereotactic conformal radiotherapy. In: In: Leavitt DD (ed) Proc XIIth International Conference on the Use of Computers in Radiotherapy (ICCR). Medical Physics Publishing, Madison, Wisconsin, pp 163–165Google Scholar
  39. Solberg TD, Boedeker KL, DeSalles AAF (2001) Dynamic arc radiosurgery field shaping: a comparison with static field conformal and noncoplanar circular arcs. Int J Radiat Oncol Biol Phys 49:1482–1491CrossRefGoogle Scholar
  40. Spiegelmann R, Friedman WA (1991) Stereotactic suboccipital transcerebellar biopsy under local anesthesia using the Cosman-Roberts-Wells frame. J Neurosurg 75:486–488PubMedGoogle Scholar
  41. Stärk S, Grosu AL, Molls M et al. (1997) Maskentechnik der Firma BrainLAB — Nicht — invasive Fixierung bei stereotaktischen Strahlentherapie von Läsionen im Gehirn. Biomed Tech 42:352–353CrossRefGoogle Scholar
  42. Stärk S, Grosu AL, Kneschaurek P (2004) Dynamic arc stereotactic radiotherapy. J Radiat Oncol Biol PhysGoogle Scholar
  43. Sturm V, Pastyr O, Schlegel W (1983) Stereotactic computer tomography with a modified Riechert-Mundinger device as the basis for integrated stereotactic neuroradiological investigations. Acta Neurochir 68:11–17CrossRefGoogle Scholar
  44. Verhey LJ, Smith V (1995) The physics of radiosurgery. Semin Radiat Oncol 5:175–191PubMedGoogle Scholar
  45. Yu C, Main W, Taylor D, Kuduvalli G et al. (2004) An anthropomorphic phantom study of the accuracy of CyberKnife spinal radiosurgery. Neurosurgery 55:1138–1149PubMedCrossRefGoogle Scholar
  46. Zimmermann FB, Geinitz H, Schill S, Grosu AL et al. (2005) Stereotactic fractionated radiation therapy for stage I non small cell lung cancer. Initial results. Lung Cancer 48:107–114PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Anca-Ligia Grosu
    • 1
  • Peter Kneschaurek
    • 1
  • Wolfgang Schlegel
    • 2
  1. 1.Department of Radiation OncologyKlinikum rechts der Isar, Technical UniversityMunichGermany
  2. 2.Deutsches KrebsforschungszentrumHeidelbergGermany

Personalised recommendations