3D Reconstruction

  • Jürgen Hesser
  • Dzmitry Stsepankou
Part of the Medical Radiology book series (MEDRAD)


Field Programmable Gate Array Projection Data Transmission Tomography Limited View Angle IEEE Trans Image Processing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andersen AH, Kak AC (1984) Simultaneous algebraic reconstruction technique (SART): a superior implementation of the ART algorithm. Ultrasound Imaging 6:81–94CrossRefGoogle Scholar
  2. Cabral B, Cam N, Foran J (1994) Accelerated volume rendering and tomographic reconstruction using texture mapping hardware. 1994 symposium on volume visualization, Tysons Corner, Virginia, ACM SIGGRAPH, pp 91–98CrossRefGoogle Scholar
  3. Chang LT, Herman GT (1980) A scientific study of filter selection for a fan-beam convolution algorithm. Siam J Appl Math 39:83–105CrossRefGoogle Scholar
  4. Chidlow K, Möller T (2003) Rapid emission tomography reconstruction. Workshop on volume graphics (VG03), pp 15–26Google Scholar
  5. Cormack AM (1963) Representation of a function by its line integrals, with some radiological applications. J Appl Phys 34:2722–2727CrossRefGoogle Scholar
  6. Defrise M, Clack R (1994) A cone-beam reconstruction algorithm using shift variant filtering and cone-beam backprojection. IEEE Trans Med Imaging 13:186–195CrossRefPubMedGoogle Scholar
  7. Donoho DL, Johnstone IM, Hoch JC, Stern AS (1992) Maximum entropy and the near black object. J R Statist Ser B 54:41–81Google Scholar
  8. Euler E, Wirth S, Pfeifer KJ, Mutschler W, Hebecker A (2000) 3D-imaging with an isocentric mobile C-Arm. Electromedica 68:122–126Google Scholar
  9. Feldkamp LA, Davis LC, Kress JW (1984) Practical cone-beam algorithm. J Opt Soc Am A 1:612–619CrossRefGoogle Scholar
  10. Geman D, Yang C (1995) Nonlinear image recovery with halfquadratic regularization. IEEE Trans Image Processing 4:932–946CrossRefGoogle Scholar
  11. Gordon R, Bender R, Herman GT (1970) Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and X-ray photography. J Theor Biol 29:471–481PubMedCrossRefGoogle Scholar
  12. Grangeat P (1991) Mathematical framework of cone-beam 3D reconstruction via the first derivative of the Radon transform. In: Herman GT, Louis AK (eds) Mathematical methods in tomography, lecture notes in mathematics. Springer, Berlin Heidelberg New York, pp 66–97Google Scholar
  13. Hounsfield GN (1973) Computerized traverse axial scanning (tomography). Part I. Description of system. Br J Radiol 46:1016–1022PubMedGoogle Scholar
  14. Hsiao IT, Rangarajan A, Gindi G (2002) A provably convergent OS-EM like reconstruction algorithm for emission tomography. Proc SPIE 4684:10–19CrossRefGoogle Scholar
  15. Hudson HM, Larkin RS (1994) Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imaging 13:601–609CrossRefPubMedGoogle Scholar
  16. Kachelriess M, Schaller S, Kalender WA (2000) Advanced single slice rebinning in cone-beam spiral CT. Med Phys 27:754–772PubMedCrossRefGoogle Scholar
  17. Kalender WA, Seissler W, Klotz E, Vock P (1990) Spiral volumetric CT with single-breathhold technique, continuous transport, and continuous scanner rotation. Radiology 176:181–183PubMedGoogle Scholar
  18. Kudo H, Saito T (1994) Derivation and implementation of a cone-beam reconstruction algorithm for non-planar orbits. IEEE Trans Med Imaging 13:196–211CrossRefPubMedGoogle Scholar
  19. Lange K, Carson R (1984) EM reconstruction algorithms for emission and transmission tomography. J Comput Tomogr 8:306–316Google Scholar
  20. Mueller K (1998) Fast and accurate three-dimensional reconstruction from cone-beam projection data using algebraic methods. PhD dissertation, Ohio State UniversityGoogle Scholar
  21. Persson M, Bone D, Elmqvist H (2001) Total variation norm for three-dimensional iterative reconstruction in limited view angle tomography. Phys Med Biol 46:853–866PubMedCrossRefGoogle Scholar
  22. Qi J, Leahy RM (2000) Resolution and noise properties of MAP reconstruction for fully 3-D PET. IEEE Trans Med Imaging 19:493–506PubMedCrossRefGoogle Scholar
  23. Rudin LI, Osher LI, Fatemi E (1992) Nonlinear total variation based noise removal algorithms. Physica D 60:259–268CrossRefGoogle Scholar
  24. Schaller S, Flohr T, Steffen P (1997) New, efficient Fourier-reconstruction method for approximate image reconstruction in spiral cone-beam CT at small cone angles. SPIE Med Imag Conf Proc 3032:213–224CrossRefGoogle Scholar
  25. Shepp L, Logan BF (1974) Reconstructing interior head tissue from X-ray transmissions. IEEE Trans Nucl Sci 21:228–236CrossRefGoogle Scholar
  26. Stsepankou D, Müller U, Kornmesser K, Hesser J, Männer R (2003) FPGA-accelerated volume reconstruction from X-ray. World Conference on Medical Physics and Biomedical Engineering, Sydney, AustraliaGoogle Scholar
  27. Tam KC, Samarasekera S, Sauer F (1998) Exact cone-beam CT with a spiral scan. Phys Med Biol 43:1015–1024PubMedCrossRefGoogle Scholar
  28. Tikhonov AN, Leonov AS, Yagola A (1997) Nonlinear ill-posed problems. Kluwer, DordrechtGoogle Scholar
  29. Toft P (1996) The radon transform: theory and implementation. PhD thesis, Department of Mathematical Modelling, Technical University of DenmarkGoogle Scholar
  30. Villain N, Goussard Y, Idier J, Allain M (2003) Three-dimensional edge-preserving image enhancement for computed tomography. IEEE Trans Med Imaging 22:1275–1287PubMedCrossRefGoogle Scholar
  31. Yan XH, Leahy RM (1992) Cone-beam tomography with circular, elliptical, and spiral orbits. Phys Med Biol 37:493–506CrossRefGoogle Scholar
  32. Yu DF, Fessler JA (2002) Edge-preserving tomographic reconstruction with nonlocal regularization. IEEE Trans Med Imaging 21:159–173PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Jürgen Hesser
    • 1
  • Dzmitry Stsepankou
    • 1
  1. 1.Department of ICMUniversitäten Mannheim und HeidelbergMannheimGermany

Personalised recommendations