Monte Carlo Dose Calculation for Treatment Planning

  • Matthias Fippel
Part of the Medical Radiology book series (MEDRAD)


Monte Carlo Planning Target Volume Dose Distribution Dose Calculation Variance Reduction Technique 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agostinelli S et al. (2003) GEANT4-a simulation toolkit. Nucl Instrum Methods A506:250–303Google Scholar
  2. Alber M, Birkner M, Bakai A, Dohm O, Fippel M, Paulsen F, Belka C, Budach W, Nüsslin F (2003) Routine use of Monte Carlo dose computation for head and neck IMRT optimization. Int J Radiat Oncol Biol Phys 57 (Suppl) 1:S208Google Scholar
  3. Baro J, Sempau J, Fernandez-Varea JM, Salvat F (1995) PENELOPE: an algorithm for Monte Carlo simulation of the penetration and energy loss of electrons and positrons in matter. Nucl Instrum Methods B100:31–46Google Scholar
  4. Berger MJ (1963) Monte Carlo Calculation of the penetration and diffusion of fast charged particles. In: Alder B, Fernbach S, Rotenberg M (eds) Methods in computational physics. Academic Press, New York, pp 135–215Google Scholar
  5. Briesmeister JF (1997) MCNP-a general Monte Carlo N-Particle Transport Code. Los Alamos National Laboratory Report No. LA-12625-MGoogle Scholar
  6. Deasy JO, Wickerhauser V, Picard M (2002) Accelerating Monte-Carlo simulations of radiation therapy dose distributions using wavelet threshold denoising. Med Phys 29:2366–2377PubMedGoogle Scholar
  7. Fippel M (1999) Fast Monte Carlo dose calculation for photon beams based on the VMC electron algorithm. Med Phys 26:1466–1475PubMedCrossRefGoogle Scholar
  8. Fippel M (2004) Efficient particle transport simulation through beam modulating devices for Monte Carlo treatment planning. Med Phys 31:1235–1242PubMedGoogle Scholar
  9. Fippel M, Nüsslin F (2003) Smoothing MC calculated dose distributions by iterative reduction of noise. Phys Med Biol 48:1289–1304PubMedCrossRefGoogle Scholar
  10. Fippel M, Haryanto F, Dohm O, Nüsslin F, Kriesen S (2003) A virtual photon energy fluence model for Monte Carlo dose calculation. Med Phys 30:301–311PubMedCrossRefGoogle Scholar
  11. Hartmann Siantar CL, Walling RS, Daly TP, Faddegon B, Albright N, Bergstrom P, Chuang C, Garrett D, House RK, Knapp D, Wieczorek DJ, Verhey LJ (2001) Description and dosimetric verification of the PEREGRINE Monte Carlo dose calculation system for photon beams incident on a water phantom. Med Phys 28:1322–1337Google Scholar
  12. ICRU (1992) Photon, electron and neutron interaction data for body tissues. International Commission on Radiation Units and Measurements (ICRU), Report 46Google Scholar
  13. Kawrakow I (2000a) Accurate condensed history Monte Carlo simulation of electron transport, I. EGSnrc, the new EGS4 version. Med Phys 27:485–498PubMedGoogle Scholar
  14. Kawrakow I (2000b) VMC++, electron and photon Monte Carlo calculations optimized for radiation treatment planning. In: Proc MC2000 Conference, Lisbon. Springer, Berlin Heidelberg New York, pp 229–236Google Scholar
  15. Kawrakow I (2002) On the denoising of MC calculated dose distribution. Phys Med Biol 47:3087–3103PubMedCrossRefGoogle Scholar
  16. Kawrakow I (2004) The effect of Monte Carlo statistical uncertainties on the evaluation of dose distributions in radiation treatment planning. Phys Med Biol 49:1549–1556PubMedCrossRefGoogle Scholar
  17. Kawrakow I, Fippel M (2000) Investigation of variance reduction techniques for Monte Carlo photon dose calculation using XVMC. Phys Med Biol 45:2163–2183PubMedCrossRefGoogle Scholar
  18. Kawrakow I, Fippel M, Friedrich K (1996) 3D electron dose calculation using a voxel-based Monte Carlo algorithm (VMC). Med Phys 23:445–457PubMedCrossRefGoogle Scholar
  19. Keall PJ, Hoban PW (1996) An accurate 3-D X-ray dose calculation method combining superposition and pre-generated Monte-Carlo electron track histories. Med Phys 23:479–485PubMedGoogle Scholar
  20. Ma CM, Li JS, Pawlicki T, Jiang SB, Deng J, Lee MC, Koumrian T, Luxton M, Brain S (2002) A Monte Carlo dose calculation tool for radiotherapy treatment planning. Phys Med Biol 47:1671–1689PubMedCrossRefGoogle Scholar
  21. Miao B, Jeraj R, Bao S, Mackie T (2003) Adaptive anisotropic diffusion filtering of MC dose distributions. Phys Med Biol 48:2767–2781PubMedCrossRefGoogle Scholar
  22. Nelson WR, Hirayama H, Rogers DWO (1985) The EGS4 Code System. SLAC Report No. SLAC-265Google Scholar
  23. Neuenschwander H, Born E (1992) A macro Monte Carlo method for electron beam dose calculations. Phys Med Biol 37:107–125CrossRefGoogle Scholar
  24. Rogers DWO, Faddegon BA, Ding GX, Ma CM, Wei J, Mackie TR (1995) BEAM: a Monte Carlo code to simulate radiotherapy treatment units. Med Phys 22:503–524PubMedCrossRefGoogle Scholar
  25. Sempau J, Wilderman SJ, Bielajew AF (2000) DPM, a fast, accurate Monte Carlo code optimized for photon and electron radiotherapy treatment planning dose calculations. Phys Med Biol 45:2263–2291PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Matthias Fippel
    • 1
  1. 1.Universitätsklinik für Radioonkologie, Medizinische PhysikUniversitätsklinikum TübingenTübingenGermany

Personalised recommendations