Skip to main content

Orientierung in Zeit und Raum

  • Chapter
Book cover Verhaltensbiologie

Part of the book series: Springer-Lehrbuch ((SLB))

  • 1532 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Able K (1996) The debate over olfactory navigation by homing pigeons. J Exp Biol 199:121–124

    Google Scholar 

  • Able K, Able M (1996) The flexible migration orientation system of the savannah sparrow (Passerculus sandwichensis). J Exp Biol 199:3–8

    PubMed  Google Scholar 

  • Acosta-Avalos D, Esquivel DMS, Wajnberg E, Lins de Barros HGP, Oliveira PS, Leal I (2001) Seasonal patterns in the orientation system of the migratory ant Pachycondyla marginata. Naturwissenschaften 88:343–346

    Article  PubMed  CAS  Google Scholar 

  • Akesson S, Wehner R (2002) Visual navigation in desert ants Cataglyphis fortis: are snapshots coupled to a celestial system of reference? J Exp Biol 205:1971–1978

    PubMed  Google Scholar 

  • Albrecht U (2002) Invited review: regulation of mammalian circadian clock genes. J Appl Physiol 92:1348–1355

    PubMed  CAS  Google Scholar 

  • Alerstam T, Gudmundsson GA, Green M, Hedenström A (2001) Migration along orthodromic sun compass routes by Arctic birds. Science 291:300–303

    Article  PubMed  CAS  Google Scholar 

  • Alerstam T, Hedenström A, Å kesson S (2003) Long-distance migration: evolution and determinants. Oikos 103:247–260

    Article  Google Scholar 

  • André M, Kamminga C (2000) Rhythmic dimension in the echolocation click trains of sperm whales: a possible function of identification and communication. J Mar Biol Ass UK 80:163–169

    Google Scholar 

  • Aschoff J (1960) Exogenous and endogenous components in circadian rhythms. Cold Spring Harbor Symp Quant Biol 25:11–28

    PubMed  CAS  Google Scholar 

  • Au WW, Benoit-Bird KJ (2003) Automatic gain control in the echolocation system of dolphins. Nature 423:861–863

    Article  PubMed  CAS  Google Scholar 

  • Bairlein F (2002) How to get fat: nutritional mechanisms of seasonal fat accumulation in migratory songbirds. Naturwissenschaften 89:1–10

    Article  PubMed  CAS  Google Scholar 

  • Bardunias PM, Jander R (2000) Three dimensional path integration in the house mouse (Mus domestica). Naturwissenschaften 87:532–534

    Article  PubMed  CAS  Google Scholar 

  • Beck W, Wiltschko W(1988) Magnetic factors control the migratory direction of pied flycatchers (Ficedula hypoleuca Pallas). In: Ouellet H (ed) Acta XIX Congressus Internationalis Ornitholgici. Univ of Ottawa Press, Ottawa, pp 1955–1962

    Google Scholar 

  • Bennett AT (1996) Do animals have cognitive maps? J Exp Biol 199:219–224

    PubMed  CAS  Google Scholar 

  • Berthold P (2000) Vogelzug. Eine aktuelle Gesamtübersicht. Wissenschaftliche Buchgesellschaft, Darmstadt

    Google Scholar 

  • Berthold P, Helbig AJ, Mohr G, Querner U (1992) Rapid microevolution of migratory behaviour in a wild bird species. Nature 360:668–670

    Article  Google Scholar 

  • Bertolucci C, Leorati M, Innocenti A, Foá A (1999) Circannual variations of lizard circadian activity rhythms in constant darkness. Behav Ecol Sociobiol 46:200–209

    Article  Google Scholar 

  • Bisch-Knaden S, Wehner R (2003) Landmark memories are more robust when acquired at the nest site than en route: experiments in desert ants. Naturwissenschaften 90:127–130

    PubMed  CAS  Google Scholar 

  • Boles LC, Lohmann KJ (2003) True navigation and magnetic maps in spiny lobsters. Nature 421:60–63

    Article  PubMed  CAS  Google Scholar 

  • Burt T, Holland R, Guilford T (1997) Further evidence for visual landmark involvement in the pigeon’s familiar area map. Anim Behav 53:1203–1209

    Article  PubMed  Google Scholar 

  • Burt de Perrera T (2004) Fish can encode order in their spatial map. Proc R Soc Lond B 271:2131–2134

    Google Scholar 

  • Burt de Perrera T, Garcia C (2003) Amarillo fish (Girardinichthys multiradiatus) use visual landmarks to orient in space. Ethology 109:341–350

    Google Scholar 

  • Capaldi EA, Smith AD, Osborne JL, Fahrbach SE, Farris SM, Reynolds DR, Edwards AS, Martin A, Robinson GE, Poppy GM, Riley JR (2000) Ontogeny of orientation flight in the honeybee revealed by harmonic radar. Nature 403:537–540

    Article  PubMed  CAS  Google Scholar 

  • Chittka L, Williams NM, Rasmussen H, Thomson JD (1999) Navigation without vision: bumblebee orientation in complete darkness. Proc R Soc Lond B 266:45–50

    Article  Google Scholar 

  • Cochran WW, Mouritsen H, Wikelski M (2004) Migrating songbirds recalibrate their magnetic compass daily from twilight cues. Science 304:405–408

    Article  PubMed  CAS  Google Scholar 

  • Collett M, Collett TS (2000a) How do insects use path integration for their navigation? Biol Cybern 83:245–259

    Article  PubMed  CAS  Google Scholar 

  • Collett TS, Collett M (2000b) Path integration in insects. Curr Opin Neurobiol 10:757–762

    Article  PubMed  CAS  Google Scholar 

  • Collin SP, Whitehead D (2004) The functional roles of passive electroreception in non-electric fishes. Anim Biol 54:1–25

    Article  Google Scholar 

  • Dacke M, Nilsson D-E, Scholtz CH, Byrne M, Warrant EJ (2003) Insect orientation to polarized moonlight. Nature 424:33

    Article  PubMed  CAS  Google Scholar 

  • Dehnhardt G, Mauck B, Hanke W, Bleckman H (2001) Hydrodynamic trail-following in harbor seals (Phoca vitulina). Science 293:102–104

    Article  PubMed  CAS  Google Scholar 

  • Deutschlander ME, Freake MJ, Borland SC, Phillips JB, Madden RC, Anderson LE, Wilson BW(2003) Learned magnetic compass orientation by the Siberian hamster, Phodopus sungorus. Anim Behav 65:779–786

    Article  Google Scholar 

  • Di Bitetti MS, Janson CH (2000) When will the stork arrive? Patterns of birth seasonality in Neotropical primates. Am J Primatol 50:109–130

    PubMed  Google Scholar 

  • Donati G, Lunardini A, Kappeler PM, Borgognini Tarli SM (2001) Nocturnal activity in the cathemeral red-fronted lemur (Eulemur fulvus rufus), with observations during a lunar eclipse. Am J Primatol 53:69–78

    Article  PubMed  CAS  Google Scholar 

  • Dornhaus A, Chittka L (1999) Insect behaviour: evolutionary origins of bee dances. Nature 401:38

    Article  CAS  Google Scholar 

  • Dornhaus A, Chittka L (2004) Why do honey bees dance? Behav Ecol Sociobiol 55:395–401

    Article  Google Scholar 

  • Durou S, Lauga J, Dejan A (2001) Intensive food searching in humid patches: adaptation of a myrmicine ant to environmental constraints. Behaviour 138:251–259

    Article  Google Scholar 

  • Dyer FC, Dickinson JA (1996) Sun-compass learning in insects: representation in a simple mind. Curr Direct Psychol Sci 5:67–72

    Google Scholar 

  • Emde G von der, Schwarz S, Gomez L, Budelli R, Grant K (1998) Electric fish measure distance in the dark. Nature 395:890–894

    PubMed  Google Scholar 

  • Engelmann J, Hanke W, Bleckmann H (2002) Lateral line reception in still and running water. J Comp Physiol A 188:513–526

    CAS  Google Scholar 

  • Erkert HG (2002) Aktivitätsperiodik der Chiroptera. In: Fischer MS, Niethammer J, Schliemann H, Starck D (Hrsg) Handbuch der Zoologie. Band VIII: Mammalia. Teilband 61: Chiroptera. W de Gruyter, Berlin New York, pp 83–129

    Google Scholar 

  • Esch HE, Zhang S, Srinivasan MV, Tautz J (2001) Honeybee dances communicate distances measured by optic flow. Nature 411:581–583

    Article  PubMed  CAS  Google Scholar 

  • Fay RR, Popper AN (2000) Evolution of hearing in vertebrates: the inner ears and processing. Hear Res 149:1–10

    Article  PubMed  CAS  Google Scholar 

  • Fernald RD (2000) Evolution of eyes. Curr Opin Neurobiol 10:444–450

    Article  PubMed  CAS  Google Scholar 

  • Flamarique IN, Browman HI (2001) Foraging and prey-search behaviour of small juvenile rainbow trout (Oncorhynchus mykiss) under polarized light. J Exp Biol 204:2415–2422

    PubMed  CAS  Google Scholar 

  • Fransson T, Jakobsson S, Johansson P, Kullberg C, Lind J, Vallin A (2001) Magnetic cues trigger extensive refuelling. Nature 414:35–36

    Article  PubMed  CAS  Google Scholar 

  • Frisch K von (1967) The Dance Language and Orientation of Bees. Belknap Press of Harvard Univ Press, Cambridge/MA

    Google Scholar 

  • Fry SN, Wehner R (2002) Honey bees store landmarks in an egocentric frame of reference. J Comp Physiol A 187:1009–1016

    Article  Google Scholar 

  • Gagliardo A, Ioalè P, Odetti F, Bingman VP (2001) The ontogeny of the homing pigeon navigational map: evidence for a sensitive learning period. Proc R Soc Lond B 268:197–202

    Article  CAS  Google Scholar 

  • Gereta E, Wolanski E (1998) Wildlife-water quality interactions in the Serengeti National Park, Tanzania. Afr J Ecol 36:1–14

    Article  Google Scholar 

  • Gilbert F, Elsner N (2000) Directional hearing of a grasshopper in the field. J Exp Biol 203:983–993

    PubMed  CAS  Google Scholar 

  • Goel N, Lee TM (1997) Social cues modulate free-running circadian activity rhythms in the diurnal rodent, Octodon degus. Am J Physiol 273:R797–804

    PubMed  CAS  Google Scholar 

  • Gursky S (2003) Lunar philia in a nocturnal primate. Int J Primatol 24:351–367

    Article  Google Scholar 

  • Gwinner E (1996) Circadian and circannual programmes in avian migration. J Exp Biol 199:39–48

    PubMed  Google Scholar 

  • Gwinner E, Brandstätter R (2001) Complex bird clocks. Phil Trans R Soc Lond B 356:1801–1810

    Article  CAS  Google Scholar 

  • Hagstrum JT (2000) Infrasound and the avian navigational map. J Ex p Biol 203:1103–1111

    CAS  Google Scholar 

  • Halle S, Stenseth NC (1994) Microtine ultradian rhythm of activity: an evaluation of different hypotheses on the triggering mechanism. Mammal Rev 24:17–39

    Google Scholar 

  • Harley HE, Putman EA, Roitblat HL (2003) Bottlenose dolphins perceive object features through echolocation. Nature 424:667–669

    Article  PubMed  CAS  Google Scholar 

  • Hau M (2001) Timing of breeding in variable environments: tropical birds as model systems. Horm Behav 40:281–290

    Article  PubMed  CAS  Google Scholar 

  • Heldmaier G, Neuweiler G (2003) Vergleichende Tierphysiologie. Band 1. Springer, Heidelberg

    Google Scholar 

  • Helfrich-Forster C, Stengl M, Homberg U (1998) Organization of the circadian system in insects. Chronobiol Int 15:567–594

    Article  PubMed  CAS  Google Scholar 

  • Holland RA (2003) The role of visual landmarks in the avian familiar area map. J Exp Biol 206:1773–1778

    Article  PubMed  Google Scholar 

  • Humston R, Ault JS, Lutcavage M, Olson DB (2000) Schooling and migration of large pelagic fishes relative to environmental cues. Fisheries Oceanography 9:136–146

    Article  Google Scholar 

  • Jetz W, Steffen J, Linsenmair KE (2003) Effects of light and prey availability on nocturnal, lunar and seasonal activity of tropical nightjars. Oikos 103:627–639

    Article  Google Scholar 

  • Kamil AC, Cheng K (2001) Way-finding and landmarks: the multiple-bearings hypothesis. J Exp Biol 204:103–113

    PubMed  CAS  Google Scholar 

  • Kappeler PM, Erkert HG (2003) On the move around the clock: correlates and determinants of cathemeral activity in wild redfronted lemurs (Eulemur fulvus rufus). Behav Ecol Sociobiol 54:359–369

    Article  Google Scholar 

  • Keller TA, Powell I, Weissburg MJ (2003) Role of olfactory appendages in chemically mediated orientation of blue crabs. Mar Ecol Progr Ser 261:217–231

    Google Scholar 

  • Kiltie RA (2000) Scaling of visual acuity with body size in mammals and birds. Funct Ecol 14:226–234

    Article  Google Scholar 

  • Kimchi T, Etienne AS, Terkel J (2004) A subterranean mammal uses the magnetic compass for path integration. Proc Natl Acad Sci USA 101:1105–1109

    Article  PubMed  CAS  Google Scholar 

  • Körtner G, Geiser F (2000) Torpor and activity patterns in free-ranging sugar gliders Petaurus breviceps (Marsupialia). Oecologia 123:350–357

    Google Scholar 

  • Kristensen EA, Closs GP (2004) Anti-predator response of naive and experienced common bully to chemical alarm cues. J Fish Biol 64:643–652

    Article  Google Scholar 

  • Kullberg C, Lind J, Fransson T, Jakobsson S, Vallin A (2003) Magnetic cues and time of season affect fuel deposition in migratory thrush nightingales (Luscinia luscinia). Proc R Soc Lond B 270:373–378

    Article  Google Scholar 

  • Labhart T, Meyer EP (2002) Neural mechanisms in insect navigation: polarization compass and odometer. Curr Opin Neurobiol 12:707–714

    Article  PubMed  CAS  Google Scholar 

  • Layne JE, Barnes WJP, Duncan LMJ (2003) Mechanisms of homing in the fiddler crab Uca rapax. 2. Information sources and frame of reference for a path integration system. J Exp Biol 206:4425–4442

    PubMed  Google Scholar 

  • Levine JD, Funes P, Dowse HB, Hall JC (2002) Resetting the circadian clock by social experience in Drosophila melanogaster. Science 298:2010–2012

    Article  PubMed  CAS  Google Scholar 

  • Lohmann KJ, Lohmann CMF, Ehrhart LM, Bagley DA, Swing T (2004) Geomagnetic map used in sea-turtle navigation. Nature 428:909

    Article  PubMed  CAS  Google Scholar 

  • Marhold S, Wiltschko W (1997) A magnetic polarity compass for direction finding in a subterranean mammal. Naturwissenschaften 84:421–423

    Article  CAS  Google Scholar 

  • Menzel R, Brandt R, Gumbert A, Komischke B, Kunze J (2000) Two spatial memories for honeybee navigation. Proc R Soc Lond B 267:961–968

    CAS  Google Scholar 

  • Menzel R, Greggers U, Smith A, Berger S, Brandt R, Brunke S, Bundrock G, Hülse S, Plümpe T, Schaupp F, Schüttler E, Stach S, Stindt J, Stollhoff N, Watzl S (2005) Honey bees navigate according to a map-like spatial memory. Proc Natl Acad Sci USA 102:3040–3045

    Article  PubMed  CAS  Google Scholar 

  • Møller AP (2001) Heritability of arrival date in a migratory bird. Proc R Soc Lond B 268:203–206

    Google Scholar 

  • Mondor EB, Roitberg BD (2003) Age-dependent fitness costs of alarm signaling in aphids. Can J Zool 81:757–762

    Article  Google Scholar 

  • Mora CV, Davidson M, Wild JM, Walker MM (2004) Magnetoreception and its trigeminal mediation in the homing pigeon. Nature 432:508–511

    Article  PubMed  CAS  Google Scholar 

  • Mouritsen H, Larsen ON (1998) Migrating young pied flycatchers Ficedula hypoleuca do not compensate for geographic displacements. J Exp Biol 201:2927–2934

    Google Scholar 

  • Mouritsen H, Larsen ON (2001) Migrating songbirds tested in computercontrolled Emlen funnels use stellar cues for a time-independent compass. J Exp Biol 204:3855–3865

    PubMed  CAS  Google Scholar 

  • Müller M, Wehner R (1988) Path integration in desert ants, Cataglyphis fortis. Proc Natl Acad Sci USA 85:5287–5290

    PubMed  Google Scholar 

  • Naylor E (2001) Marine animal behaviour in relation to lunar phase. Earth Moon Planets 85–86:291–302

    Google Scholar 

  • Neuweiler G (1990) Auditory adaptations for prey capture in echolocating bats. Physiol Rev 70:615–641

    PubMed  CAS  Google Scholar 

  • Oosthuizen MK, Cooper HM, Bennett NC (2003) Circadian rhythms of locomotor activity in solitary and social species of African mole-rats (Family: Bathyergidae). J Biol Rhythms 18:481–490

    Article  PubMed  Google Scholar 

  • Oster H, Maronde E, Albrecht U (2002) The circadian clock as a molecular calendar. Chronobiol Int 19:507–516

    Article  PubMed  CAS  Google Scholar 

  • Palmer JD (2000) The clocks controlling the tide-associated rhythms of intertidal animals. BioEssays 22:32–37

    Article  PubMed  CAS  Google Scholar 

  • Perdeck AC (1958) Two types of orientation in migrating Sturnus vulgaris and Fringilla coelebs as revealed by displacement experiments. Ardea 46:1–37

    Google Scholar 

  • Pereira ME, Strohecker RA, Cavigelli SA, Hughes CL, Pearson DD (1999) Metabolic strategy and social behavior in Lemuridae. In: Rasamimanana H, Rakotosamimanana B, Ganzhorn JU, Goodman SM (eds) New Directions in Lemur Studies. Plenum, New York, pp 93–118

    Google Scholar 

  • Pulido F, Berthold P, Mohr G, Querner U (2001) Heritability of the timing of autumn migration in a natural bird population. Proc R Soc Lond B 268:953–959

    CAS  Google Scholar 

  • Reppert SM, Weaver DR (2002) Coordination of circadian timing in mammals. Nature 418:935–941

    Article  PubMed  CAS  Google Scholar 

  • Rinkwitz S, Bober E, Baker R (2001) Development of the vertebrate inner ear. Annu NY Acad Sci 942:1–14

    CAS  Google Scholar 

  • Rosenberg J, Burt PJA (1999) Windborne displacements of desert locusts from Africa to the Caribbean and South America. Aerobiologica 15:167–175

    Google Scholar 

  • Saigusa M, Kawagoye O (1997) Circatidal rhythm of an intertidal crab, Hemigrapsus sanguineus: synchrony with unequal tide height and involvement of a light-response mechanism. Marine Biol 129:87–96

    Article  Google Scholar 

  • Sandberg R, Moore FR (1996) Migratory orientation in red-eyed vireos, Vireo olivaceus, in relation to energetic condition and ecological context. Behav Ecol Sociobiol 39:1–10

    Article  Google Scholar 

  • Schmidt-Koenig K (1960) The sun azimuth compass: one factor in the orientation of homing pigeons. Science 131:826–827

    PubMed  CAS  Google Scholar 

  • Schultz TF, Kay SA (2003) Circadian clocks in daily and seasonal control of development. Science 301:326–328

    Article  PubMed  CAS  Google Scholar 

  • Seyfarth EA, Hergenröther R, Ebbes H, Barth FG (1982) Idiothetic orientation of a wandering spider: compensation of detours and estimates of goal distance. Behav Ecol Sociobiol 11:139–148

    Article  Google Scholar 

  • Sheeba V, Chandrashekaran MK, Joshi A, Sharma VK (2002) Locomotor activity rhythm in Drosophila melanogaster after 600 generations in an aperiodic environment. Naturwissenschaften 89:512–514

    Article  PubMed  CAS  Google Scholar 

  • Shi Y, Radlwimmer FB, Yokoyama S (2001) Molecular genetics and the evolution of ultraviolet vision in vertebrates. Proc Natl Acad Sci USA 98:11731–11736

    PubMed  CAS  Google Scholar 

  • Shine R, Sun L-X (2003) Attack strategy of an ambush predator: which attributes of the prey trigger a pit-viper’s strike? Funct Ecol 17:340–348

    Google Scholar 

  • Siemers BM, Schnitzler H-U (2004) Echolocation signals reflect niche differentiation in five sympatric congeneric bat species. Nature 429:657–661

    Article  PubMed  CAS  Google Scholar 

  • Sillero-Zubiri C, Macdonald DW (1998) Scent-marking and territorial behaviour of Ethiopian wolves, Canis simensis. J Zool Lond 245:351–361

    Google Scholar 

  • Srinivasan M, Zhang S, Altwein M, Tautz J (2000) Honeybee navigation: nature and calibration of the ‘odometer’. Science 287:851–853

    Article  PubMed  CAS  Google Scholar 

  • Sukhedo MVK, Sukhedo SC (2004) Trematode behaviours and the perceptual worlds of parasites. Can J Zool 82:292–315

    Google Scholar 

  • Teeling EC, Scally M, Kao DJ, Romagnoli ML, Springer MS, Stanhope MJ (2000) Molecular evidence regarding the origin of echolocation and flight in bats. Nature 403:188–192

    PubMed  CAS  Google Scholar 

  • Tomioka K, Abdelsalam S (2004) Circadian organization in hemimetabolous insects. Zool Sci 21:1153–1162

    Article  PubMed  Google Scholar 

  • Topping MG, Millar JS, Goddard JA (1999) The effects of moonlight on nocturnal activity in bushy-tailed wood rats (Neotoma cinerea). Can J Zool 77:480–485

    Article  Google Scholar 

  • Ugolini A, Fantini T, Innocenti R (2003) Orientation at night: an innate moon compass in sandhoppers (Amphipoda: Talitridae). Proc R Soc Lond B 270:279–281

    Article  Google Scholar 

  • Usman K, Habersetzer J, Subbaraj R, Gopalkrishnaswamy G, Paramandam K (1980) Behavior of bats during a lunar eclipse. Behav Ecol Sociobiol 7:79–81

    Article  Google Scholar 

  • Vickers NJ (2000) Mechanisms of animal navigation in odor plumes. Biol Bull 198:203–212

    PubMed  CAS  Google Scholar 

  • Warrant EJ, Kelber A, Gislen A, Greiner B, Ribi W, Wcislo WT (2004) Nocturnal vision and landmark orientation in a tropical halictid bee. Curr Biol 14:1309–1318

    Article  PubMed  CAS  Google Scholar 

  • Wehner R (1989) Neurobiology of polarization vision. Trends Neurosci 12:353–359

    Article  PubMed  CAS  Google Scholar 

  • Wehner R (1997) Sensory systems and behaviour. In: Krebs JR, Davies NB (eds) Behavioural Ecology. Blackwell, Oxford, pp 19–41

    Google Scholar 

  • Wehner R (2001) Polarization vision-a uniform sensory capacity? J Exp Biol 204:2589–2596

    PubMed  CAS  Google Scholar 

  • Weissburg MJ, Doall MH, Yen J (1998) Following the invisible trail: kinematic analysis of mate-tracking in the copepod Temora longicornis. Phil Trans R Soc Lond B 353:701–712

    Article  CAS  Google Scholar 

  • Welch JM, Forward RB (2001) Flood title transport of blue crab, Callinectes sapidus, postlarvae: behavioral responses to salinity and turbulence. Marine Biol 139:911–918

    Google Scholar 

  • Wikelski M, Tarlow EM, Raim A, Diehl RH, Larkin RP, Visser GH (2003) Costs of migration in free-flying songbirds. Nature 423:704

    Article  PubMed  CAS  Google Scholar 

  • Wiltschko W, Wiltschko R (1972) Magnetic compass of European robins. Science 176:62–64

    PubMed  Google Scholar 

  • Wiltschko W, Wiltschko R (2002) Magnetic compass orientation in birds and its physiological basis. Naturwissenschaften 89:445–452

    Article  PubMed  CAS  Google Scholar 

  • Wiltschko W, Traudt J, Güntürkün O, Prior H, Wiltschko R (2002) Lateralization of magnetic compass orientation in a migratory bird. Nature 419:467–470

    Article  PubMed  CAS  Google Scholar 

  • Winne CT, Keck MB (2004) Daily activity patterns of whiptail lizards (Squamata: Teiidae: Aspidoscelis): a proximate response to environmental conditions or an endogenous rhythm? Funct Ecol 18:314–321

    Article  Google Scholar 

  • Wohlgemuth S, Ronacher B, Wehner R (2001) Ant odometry in the third dimension. Nature 411:795–798

    Article  PubMed  CAS  Google Scholar 

  • Wyatt TD (2003) Pheromones and Animal Behaviour. Cambridge Univ Press, Cambridge

    Google Scholar 

  • Yamahira K (2004) How do multiple environmental cycles in combination determine reproductive timing in marine organisms? A model and test. Funct Ecol 18:4–15

    Article  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2006). Orientierung in Zeit und Raum. In: Verhaltensbiologie. Springer-Lehrbuch. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-29977-7_4

Download citation

Publish with us

Policies and ethics