Skip to main content

The Dissection of CD8 T Cells During Liver-Stage Infection

  • Chapter

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 297))

Abstract

Multiple injections of γ-radiation-attenuated Plasmodium sporozoites (γ-spz) can induce long-lived, sterile immunity against pre-erythrocytic stages of malaria. Malaria antigen (Ag)-specific CD8 T cells that produce IFN-γ are key effector cells in this model of protection. Although there have been numerous reports dealing with γ-spz-induced CD8 T cells in the spleen, CD8 T cells most likely confer protection by targeting infected hepatocytes. Consequently, in this chapter we discuss observations and hypotheses concerning CD8 T cell responses that occur in the liver after an encounter with the Plasmodium parasite. Protracted protection against pre-erythrocytic stages requires memory CD8 T cells and we discuss evidence that γ-spz-induced immunity is indeed accompanied by the presence of intrahepatic CD44hi CD45RBlo CD62llo CD122lo effector memory (EM) CD8 T cells and CD44hi CD45RBhi CD62lhi CD122hi central memory (CM) CD8 T cells. In addition, the EM CD8 T cells rapidly release IFN-γ in response to spz challenge. The possible role of Kupffer cells in the processing of spz Ags and the production of cytokines is also considered. Finally, we discuss evidence that is consistent with a model whereby intrahepatic CM CD8 T cells are maintained by IL-15 mediated-homeostatic proliferation while the EM CD8 T cells are conscripted from the CM pool in response to a persisting depot of liver-stage Ag.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahmed R, Gray D (1996) Immunological memory and protective immunity: understanding their relation. Science 272:54–60

    PubMed  CAS  Google Scholar 

  2. Aidoo, M, Lalvani A, Gilbert SC, et al. (2000) Cytotoxic T-lymphocyte epitopes for HLA-B53 and other HLA types in the malaria vaccine candidate liver-stage antigen 3. Infect Immun 68:227–232

    PubMed  CAS  Google Scholar 

  3. Ando K, Guidotti LG, Wirth S, et al. (1994) Class I-restricted cytotoxic T lymphocytes are directly cytopathic for their target cells in vivo. J Immunol 152:3245–3253

    PubMed  CAS  Google Scholar 

  4. Badovinac VP, Porter BB, Harty JT (2002) Programmed contraction of CD8(’) T cells after infection. Nat Immunol 3:619–626

    PubMed  CAS  Google Scholar 

  5. Bates MD, Meshnick SR, Sigler CI, et al. (1990) In vitro effects of primaquine and primaquine metabolites on exoerythrocytic stages of Plasmodium berghei. Am J Trop Med Hyg 42:532–537

    PubMed  CAS  Google Scholar 

  6. Berenzon D, Schwenk RJ, Letellier L, et al. (2003) Protracted protection to Plasmodium berghei malaria is linked to functionally and phenotypically heterogeneous liver memory CD8+ T cells. J Immunol 171:2024–2034

    PubMed  CAS  Google Scholar 

  7. Bottius E, BenMohamed L, Brahimi K, et al. (1996) A novel Plasmodium falciparum sporozoite and liver stage antigen (SALSA) defines major B, T helper, and CTL epitopes. J Immunol 156:2874–2884

    PubMed  CAS  Google Scholar 

  8. Bucci K, Kastens W, Hollingdale MR, et al. (2000) Influence of age and HLA type on interferon-gamma (IFN-gamma) responses to a naturally occurring polymorphic epitope of Plasmodium falciparum liver stage antigen-1 (LSA-1). Clin Exp Immunol 122:94–100

    Article  PubMed  CAS  Google Scholar 

  9. Carvalho LH, Sano G, Hafalla JC, et al. (2002) IL-4-secreting CD4+ T cells are crucial to the development of CD8+ T-cell responses against malaria liver stages. Nat Med 8:166–170

    Article  PubMed  CAS  Google Scholar 

  10. Cerami C, Kwakye-Berko F, Nussenzweig V (1992) Binding of malarial circumsporozoite protein to sulfatides [Gal(3-SO4)beta 1-Cer] and cholesterol-3-sulfate and its dependence on disulfide bond formation between cysteines in region II. Mol Biochem Parasitol 54:1–12

    Article  PubMed  CAS  Google Scholar 

  11. Cervi L, MacDonald AS, Kane C, et al. (2004) Cutting edge: dendritic cells copulsed with microbial and helminth antigens undergo modified maturation, segregate the antigens to distinct intracellular compartments, and concurrently induce microbe-specific Th1 and helminth-specific Th2 responses. J Immunol 172:2016–2020

    PubMed  CAS  Google Scholar 

  12. Clyde DF, Most H, McCarthy VC, et al. (1973) Immunization of man against sporozite-induced falciparum malaria. Am J Med Sci 266:169–177

    PubMed  CAS  Google Scholar 

  13. Connelly M, King CL, Bucci K, et al. (1997) T-cell immunity to peptide epitopes of liver-stage antigen 1 in an area of Papua New Guinea in which malaria is holoendemic. Infect Immun 65:5082–5087

    PubMed  CAS  Google Scholar 

  14. Crispe IN, Mehal WZ (1996) Strange brew: T cells in the liver. Immunol Today 17:522–525

    Article  PubMed  CAS  Google Scholar 

  15. Day KP, Marsh K (1991) Naturally acquired immunity to Plasmodium falciparum. Parasitol Today 7:68–71

    Google Scholar 

  16. De Souza Leao S, Lang T, Prina E, et al. (1995) Intracellular Leishmania amazonensis amastigotes internalize and degrade MHC class II molecules of their host cells. J Cell Sci 108 (Pt 10):3219–3231

    Google Scholar 

  17. Doolan DL, Hoffman SL (1999) IL-12 and NK cells are required for antigen-specific adaptive immunity against malaria initiated by CD8+ T cells in the Plasmodium yoelii model. J Immunol 163:884–892

    PubMed  CAS  Google Scholar 

  18. Doolan DL, Southwood S, Freilich DA, et al. (2003) Identification of Plasmodium falciparum antigens by antigenic analysis of genomic and proteomic data. Proc Natl Acad Sci U S A 100:9952–9957

    Article  PubMed  CAS  Google Scholar 

  19. Doolan DL, Wizel B, Hoffman SL (1996) Class I HLA-restricted cytotoxic T lymphocyte responses against malaria—elucidation on the basis of HLA peptide binding motifs. Immunol Res 15:280–305

    Article  PubMed  CAS  Google Scholar 

  20. Dubois S, Mariner J, Waldmann TA, et al. (2002) IL-15Ralpha recycles and presents IL-15 In trans to neighboring cells. Immunity 17:537–547

    Article  PubMed  CAS  Google Scholar 

  21. Egan JE, Hoffman SL, Haynes JD, et al. (1993) Humoral immune responses in volunteers immunized with irradiated Plasmodium falciparum sporozoites. Am J Trop Med Hyg 49:166–173

    PubMed  CAS  Google Scholar 

  22. Ehl S, Klenerman P, Aichele P, et al. (1997) A functional and kinetic comparison of antiviral effector and memory cytotoxic T lymphocyte populations in vivo and in vitro. Eur J Immunol 27:3404–3413

    PubMed  CAS  Google Scholar 

  23. Ferreira A, Schofield L, Enea V, et al. (1986) Inhibition of development of exoerythrocytic forms of malaria parasites by gamma-interferon. Science 232:881–884

    PubMed  CAS  Google Scholar 

  24. Frevert U (1994) Malaria sporozoite-hepatocyte interactions. Exp Parasitol 79:206–210

    Article  PubMed  CAS  Google Scholar 

  25. Frevert U, Galinski MR, Hugel FU, et al. (1998) Malaria circumsporozoite protein inhibits protein synthesis in mammalian cells. Embo J 17:3816–3826

    Article  PubMed  CAS  Google Scholar 

  26. Frevert U, Sinnis P, Cerami C, et al. (1993) Malaria circumsporozoite protein binds to heparan sulfate proteoglycans associated with the surface membrane of hepatocytes. J Exp Med 177:1287–1298

    Article  PubMed  CAS  Google Scholar 

  27. Gagnon E, Duclos S, Rondeau C, et al. (2002) Endoplasmic reticulum-mediated phagocytosis is a mechanism of entry into macrophages. Cell 110:119–131

    Article  PubMed  CAS  Google Scholar 

  28. Galle PR, Hofmann WJ, Walczak H, et al. (1995) Involvement of the CD95 (APO-1/Fas) receptor and ligand in liver damage. J Exp Med 182:1223–1230

    Article  PubMed  CAS  Google Scholar 

  29. Gray D, Matzinger P (1991) T cell memory is short-lived in the absence of antigen. J Exp Med 174:969–974

    Article  PubMed  CAS  Google Scholar 

  30. Guebre-Xabier M, Schwenk R, Krzych U (1999) Memory phenotype CD8(+) T cells persist in livers of mice protected against malaria by immunization with attenuated Plasmodium berghei sporozoites. Eur J Immunol 29:3978–3986

    Article  PubMed  CAS  Google Scholar 

  31. Guerin-Marchand C, Druilhe P, Galey B, et al. (1987) A liver-stage-specific antigen of Plasmodium falciparum characterized by gene cloning. Nature 329:164–167

    Article  PubMed  CAS  Google Scholar 

  32. Hafalla JC, Morrot A, Sano G, et al. (2003) Early self-regulatory mechanisms control the magnitude of CD8+ T cell responses against liver stages of murine malaria. J Immunol 171:964–970

    PubMed  CAS  Google Scholar 

  33. Hafalla JC, Sano G, Carvalho LH, et al. (2002) Short-term antigen presentation and single clonal burst limit the magnitude of the CD8(+) T cell responses to malaria liver stages. Proc Natl Acad Sci U S A 99:11819–11824

    Article  PubMed  CAS  Google Scholar 

  34. Hill AV, Allsopp CE, Kwiatkowski D, et al. (1991) Common west African HLA antigens are associated with protection from severe malaria. Nature 352:595–600

    PubMed  CAS  Google Scholar 

  35. Hill AV, Elvin J, Willis AC, et al. (1992) Molecular analysis of the association of HLA-B53 and resistance to severe malaria. Nature 360:434–439

    Article  PubMed  CAS  Google Scholar 

  36. Hoffman SL, Franke E, Hollingdale MR, et al. (1996) Attacking the infected hepatocyte. ASM Press, Washington DC

    Google Scholar 

  37. Hoffman SL, Franke ED (1994) Inducing protective immune responses against the sporozoite and liver stages of Plasmodium. Immunol Lett 41:89–94

    Article  PubMed  CAS  Google Scholar 

  38. Hogan RJ, Cauley LS, Ely KH,et al. (2002) Long-term maintenance of virus-specific effector memory CD8+ T cells in the lung airways depends on proliferation. J Immunol 169:4976–4981

    PubMed  Google Scholar 

  39. Hogan RJ, Usherwood EJ, Zhong W, et al. (2001) Activated antigen-specific CD8+ T cells persist in the lungs following recovery from respiratory virus infections. J Immunol 166:1813–1822

    PubMed  CAS  Google Scholar 

  40. Holder AA (1996) Preventing merozoite invasion of erythrocytes. ASM Press, Washington DC

    Google Scholar 

  41. Hollingdale M, Krzych U (2000) Immune responses to liver-stage parasites, vol. 80. Karger, Basel

    Google Scholar 

  42. Houde M, Bertholet S, Gagnon E, et al. (2003) Phagosomes are competent organelles for antigen cross-presentation. Nature 425:402–406

    Article  PubMed  CAS  Google Scholar 

  43. John CC, Sumba PO, Ouma JH, et al. (2000) Cytokine responses to Plasmodium falciparum liver-stage antigen 1 vary in rainy and dry seasons in highland Kenya. Infect Immun 68:5198–5204

    PubMed  CAS  Google Scholar 

  44. Joshi SK, Bharadwaj A, Chatterjee S, et al. (2000) Analysis of immune responses against T-and B-cell epitopes from Plasmodium falciparum liver-stage antigen 1 in rodent malaria models and malaria-exposed human subjects in India. Infect Immun 68:141–150

    Article  PubMed  CAS  Google Scholar 

  45. Judge AD, Zhang X, Fujii H, et al. (2002) Interleukin 15 controls both proliferation and survival of a subset of memory-phenotype CD8(+) T cells. J Exp Med 196:935–946

    Article  PubMed  CAS  Google Scholar 

  46. Kaech SM, Tan JT, Wherry EJ, et al. (2003) Selective expression of the interleukin 7 receptor identifies effector CD8 T cells that give rise to long-lived memory cells. Nat Immunol 4:1191–1198

    Article  PubMed  CAS  Google Scholar 

  47. Kaech SM, Wherry EJ, Ahmed R (2002) Effector and memory T-cell differentiation: implications for vaccine development. Nat Rev Immunol 2:251–262

    Article  PubMed  CAS  Google Scholar 

  48. Kaufmann SH (1993) Immunity to intracellular bacteria. Annu Rev Immunol 11:129–163

    Article  PubMed  CAS  Google Scholar 

  49. Khan S, van den Broek M, Schwarz K, et al. (2001) Immunoproteasomes largely replace constitutive proteasomes during an antiviral and antibacterial immune response in the liver. J Immunol 167:6859–6868

    PubMed  CAS  Google Scholar 

  50. Khan ZM, Vanderberg JP (1992) Specific inflammatory cell infiltration of hepatic schizonts in BALB/c mice immunized with attenuated Plasmodium yoelii sporozoites. Int Immunol 4:711–718

    PubMed  CAS  Google Scholar 

  51. Khan ZM, and Vanderberg JP (1991) Eosinophil-rich, granulomatous inflammatory response to Plasmodium berghei hepatic schizonts in nonimmunized rats is age-related. Am J Trop Med Hyg 45:190–201

    PubMed  CAS  Google Scholar 

  52. Khusmith S, Charoenvit Y, Kumar S, et al. (1991) Protection against malaria by vaccinationwith sporozoite surface protein 2 plus CS protein. Science 252:715–718

    PubMed  CAS  Google Scholar 

  53. Klotz FW, Scheller LF, Seguin MC, et al. (1995) Co-localization of inducible-nitric oxide synthase and Plasmodium berghei in hepatocytes from rats immunized with irradiated sporozoites. J Immunol 154:3391–3395

    PubMed  CAS  Google Scholar 

  54. Krzych U, Guebre-Zabier M, Schwenk R (1999) Malaria and the liver: tolerance and immunity to attenuated Plasmodia sporozoites. Wiley-Liss

    Google Scholar 

  55. Krzych U, Jareed T, Link HT, et al. (1992) Distinct T cell specificities are induced with the authentic versus recombinant Plasmodium berghei circumsporozoite protein. J Immunol 148:2530–2538

    PubMed  CAS  Google Scholar 

  56. Krzych U, Schwenk R, Guebre-Xabier M, et al. (2000) The role of intrahepatic lymphocytes in mediating protective immunity induced by attenuated Plasmodium berghei sporozoites. Immunol Rev 174:123–134

    Article  PubMed  CAS  Google Scholar 

  57. Ku CC, Murakami M, Sakamoto A, et al. (2000) Control of homeostasis of CD8+ memory T cells by opposing cytokines. Science 288:675–678

    Article  PubMed  CAS  Google Scholar 

  58. Kumar S, Miller LH, Quakyi IA, et al. (1988) Cytotoxic T cells specific for the circumsporozoite protein of Plasmodium falciparum. Nature 334:258–260

    Article  PubMed  CAS  Google Scholar 

  59. Kurtis JD, Hollingdale MR, Luty AJ, et al. (2001) Pre-erythrocytic immunity to Plasmodium falciparum: the case for an LSA-1 vaccine. Trends Parasitol 17:219–223

    Article  PubMed  CAS  Google Scholar 

  60. Kurtis JD, Lanar DE, Opollo M, et al. (1999) Interleukin-10 responses to liver-stage antigen 1 predict human resistance to Plasmodium falciparum. Infect Immun 67:3424–3429

    PubMed  CAS  Google Scholar 

  61. Langhorne J, Gillard S, Simon B, et al. (1989) Frequencies of CD4+ T cells reactive with Plasmodium chabaudi chabaudi: distinct response kinetics for cells with Th1 and Th2 characteristics during infection. Int Immunol 1:416–424

    PubMed  CAS  Google Scholar 

  62. Lau LL, Jamieson BD, Somasundaram T, et al. (1994) Cytotoxic T-cell memory without antigen. Nature 369:648–652

    Article  PubMed  CAS  Google Scholar 

  63. Lee WT, Yin XM, Vitetta ES (1990) Functional and ontogenetic analysis of murine CD45Rhi and CD45Rlo CD4+ T cells. J Immunol 144:3288–3295

    PubMed  CAS  Google Scholar 

  64. Li XC, Demirci G, Ferrari-Lacraz S, et al. (2001) IL-15 and IL-2: a matter of life and death for T cells in vivo. Nat Med 7:114–118

    Article  PubMed  CAS  Google Scholar 

  65. Link HT, White K, Krzych U (1993) Plasmodium berghei-specific T cells respond to non-processed sporozoites presented by B cells. Eur J Immunol 23:2263–2269

    PubMed  CAS  Google Scholar 

  66. Luty AJ, Lell B, Schmidt-Ott R, et al. (1999) Interferon-gamma responses are associated with resistance to reinfection with Plasmodium falciparum in young African children. J Infect Dis 179:980–988

    Article  PubMed  CAS  Google Scholar 

  67. Luty AJ, Lell B, Schmidt-Ott R, et al. (1998) Parasite antigen-specific interleukin-10 and antibody responses predict accelerated parasite clearance in Plasmodium falciparum malaria. Eur Cytokine Netw 9:639–646

    PubMed  CAS  Google Scholar 

  68. Malik A, Egan JE, Houghten RA, et al. (1991) Human cytotoxic T lymphocytes against the Plasmodium falciparum circumsporozoite protein. Proc Natl Acad Sci U S A 88:3300–3304

    PubMed  CAS  Google Scholar 

  69. Masopust D, Vezys V, Marzo AL, et al. (2001) Preferential localization of effector memory cells in nonlymphoid tissue. Science 291:2413–2417

    Article  PubMed  CAS  Google Scholar 

  70. Matzinger P (1994) Tolerance, danger, and the extended family. Annu Rev Immunol 12:991–1045

    PubMed  CAS  Google Scholar 

  71. May J, Lell B, Luty AJ, et al. (2001) HLA-DQB1*0501-restricted Th1 type immune responses to Plasmodium falciparum liver stage antigen 1 protect against malaria anemia and reinfections. J Infect Dis 183:168–172

    Article  PubMed  CAS  Google Scholar 

  72. Mellouk S, Maheshwari RK, Rhodes-Feuillette A, et al. (1987) Inhibitory activity of interferons and interleukin 1 on the development of Plasmodium falciparum in human hepatocyte cultures. J Immunol 139:4192–4195

    PubMed  CAS  Google Scholar 

  73. Murali-Krishna K, Lau LL, Sambhara S, et al. (1999) Persistence of memory CD8 T cells in MHC class I-deficient mice. Science 286:1377–1381

    Article  PubMed  CAS  Google Scholar 

  74. Nardin EH, Nussenzweig RS (1993) T cell responses to pre-erythrocytic stages of malaria: role in protection and vaccine development against pre-erythrocytic stages. Annu Rev Immunol 11:687–727

    Article  PubMed  CAS  Google Scholar 

  75. Nussenzweig RS, Vanderberg J, Most H, et al. (1967) Protective immunity produced by the injection of x-irradiated sporozoites of Plasmodium berghei. Nature 216:160–162

    PubMed  CAS  Google Scholar 

  76. Nussenzweig V, Nussenzweig RS (1989) Rationale for the development of an engineered sporozoite malaria vaccine. Adv Immunol 45:283–334

    Article  PubMed  CAS  Google Scholar 

  77. Oehen S, Waldner H, Kundig TM, et al. (1992) Antivirally protective cytotoxic T cell memory to lymphocytic choriomeningitis virus is governed by persisting antigen. J Exp Med 176:1273–1281

    Article  PubMed  CAS  Google Scholar 

  78. Palmer DR, Krzych U (2002) Cellular and molecular requirements for the recall of IL-4-producing memory CD4(+)CD45RO(+)CD27(-) T cells during protection induced by attenuated Plasmodium falciparum sporozoites. Eur J Immunol 32:652–661

    Article  PubMed  CAS  Google Scholar 

  79. Pasquetto V, Fidock DA, Gras H, et al. (1997) Plasmodium falciparum sporozoite invasion is inhibited by naturally acquired or experimentally induced polyclonal antibodies to the STARP antigen. Eur J Immunol 27:2502–2513

    PubMed  CAS  Google Scholar 

  80. Pinder M, Reece WH, Plebanski M, et al. (2004) Cellular immunity induced by the recombinant Plasmodium falciparum malaria vaccine, RTS,S/AS02, in semi-immune adults in The Gambia. Clin Exp Immunol 135:286–293

    Article  PubMed  CAS  Google Scholar 

  81. Plebanski M, Lee EA, Hannan CM, et al. (1999) Altered peptide ligands narrow the repertoire of cellular immune responses by interfering with T-cell priming. Nat Med 5:565–571

    Article  PubMed  CAS  Google Scholar 

  82. Pradel G, Frevert U (2001) Malaria sporozoites actively enter and pass through rat Kupffer cells prior to hepatocyte invasion. Hepatology 33:1154–1165

    Article  PubMed  CAS  Google Scholar 

  83. Renggli J, Hahne M, Matile H, et al. (1997) Elimination of P. berghei liver stages is independent of Fas (CD95/Apo-I) or perforin-mediated cytotoxicity. Parasite Immunol 19:145–148

    Article  PubMed  CAS  Google Scholar 

  84. Rickman KH, Beaudoin RL, Cassels JS, et al. (1979) Use of attenuated sporozoites in the immunization of human volunteers against falciparum malaria. Bull WHO 57:261–265

    Google Scholar 

  85. Robson KJ, Frevert U, Reckmann I, et al. (1995) Thrombospondin-related adhesive protein (TRAP) of Plasmodium falciparum: expression during sporozoite ontogeny and binding to human hepatocytes. Embo J 14:3883–3894

    PubMed  CAS  Google Scholar 

  86. Robson KJ, Hall JR, Jennings MW, et al. (1988) A highly conserved amino-acid sequence in thrombospondin, properdin and in proteins from sporozoites and blood stages of a human malaria parasite. Nature 335:79–82

    Article  PubMed  CAS  Google Scholar 

  87. Rodrigues M, Nussenzweig RS, Romero P, et al. (1992) The in vivo cytotoxic activity of CD8+ T cell clones correlates with their levels of expression of adhesion molecules. J Exp Med 175:895–905

    Article  PubMed  CAS  Google Scholar 

  88. Rogers WO, Malik A, Mellouk S, et al. (1992) Characterization of Plasmodium falciparum sporozoite surface protein 2. Proc Natl Acad Sci U S A 89:9176–9180

    PubMed  CAS  Google Scholar 

  89. Romero P, Maryanski JL, Corradin G, et al. (1989) Cloned cytotoxic T cells recognize an epitope in the circumsporozoite protein and protect against malaria. Nature 341:323–326

    Article  PubMed  CAS  Google Scholar 

  90. Sallusto F, Lenig D, Forster R, et al. (1999) Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401:708–712

    Article  PubMed  CAS  Google Scholar 

  91. Sano G, Hafalla JC, Morrot A, et al. (2001) Swift development of protective effector functions in naive CD8(+) T cells against malaria liver stages. J Exp Med 194:173–180

    Article  PubMed  CAS  Google Scholar 

  92. Scheller LF, Azad AF (1995)Maintenance of protective immunity against malaria by persistent hepatic parasites derived from irradiated sporozoites. Proc Natl Acad Sci U S A 92:4066–4068

    PubMed  CAS  Google Scholar 

  93. Schofield L, Villaquiran J, Ferreira A, et al. (1987) Gamma interferon, CD8+ T cells and antibodies required for immunity to malaria sporozoites.Nature 330:664–666

    Article  PubMed  CAS  Google Scholar 

  94. Sedegah M, Finkelman F, Hoffman SL(1994) Interleukin 12 induction of interferon gamma-dependent protection against malaria. Proc Natl Acad Sci U S A 91:10700–10702

    PubMed  CAS  Google Scholar 

  95. Seder RA, Ahmed R(2003) Similarities and differences in CD4+ and CD8+ effector and memory T cell generation. Nat Immunol 4:835–842

    Article  PubMed  CAS  Google Scholar 

  96. Seguin MC, Ballou WR, Nacy CA (1989) Interactions of Plasmodium berghei sporozoites and murine Kupffer cells in vitro. J Immunol 143:1716–1722

    PubMed  CAS  Google Scholar 

  97. Seguin MC, Klotz FW, Schneider I, et al. (1994) Induction of nitric oxide synthase protects againstmalaria in mice exposed to irradiated Plasmodium berghei infected mosquitoes: involvement of interferon gamma and CD8+ T cells. J Exp Med 180:353–358

    Article  PubMed  CAS  Google Scholar 

  98. Sprent J, Surh CD (2002) T cell memory. Annu Rev Immunol 20:551–579

    Article  PubMed  CAS  Google Scholar 

  99. Sprent J, Tough DF (2001) T cell death and memory. Science 293:245–248

    Article  PubMed  CAS  Google Scholar 

  100. Steers N, Schwenk R, Bacom DJ et al. (2005) The immune status of Kupffer cells profoundly influences their responses to infections Plasmodium berghei sporozoites. Eur J Immunol 35 (in press)

    Google Scholar 

  101. Sun P, Schwenk R, White K, et al. (2003) Protective immunity induced with malaria vaccine, RTS,S, is linked to Plasmodium falciparum circumsporozoite proteinspecific CD4+ and CD8+ T cells producing IFN-gamma. J Immunol 171:6961–6967

    PubMed  CAS  Google Scholar 

  102. Tsuji M, Miyahira Y, Nussenzweig RS, et al. (1995) Development of antimalaria immunity in mice lacking IFN-gamma receptor. J Immunol 154:5338–5344

    PubMed  CAS  Google Scholar 

  103. Usherwood EJ, Hogan RJ, Crowther G, et al. (1999) Functionally heterogeneous CD8(+) T-cell memory is induced by Sendai virus infection of mice. J Virol 73:7278–7286

    PubMed  CAS  Google Scholar 

  104. van Leeuwen EM, Gamadia LE, Baars PA, et al. (2002) Proliferation requirements of cytomegalovirus-specific, effector-type human CD8+ T cells. J Immunol 169:5838–5843

    PubMed  Google Scholar 

  105. Waldmann TA, Dubois S, Tagaya Y (2001) Contrasting roles of IL-2 and IL-15 in the life and death of lymphocytes: implications for immunotherapy. Immunity 14:105–110

    PubMed  CAS  Google Scholar 

  106. Weiss WR, Mellouk S, Houghten RA, et al. (1990) Cytotoxic T cells recognize a peptide from the circumsporozoite protein on malaria-infected hepatocytes. J Exp Med 171:763–773

    Article  PubMed  CAS  Google Scholar 

  107. Weiss WR, Sedegah M, Beaudoin RL, et al. (1988) CD8+ T cells (cytotoxic/suppressors) are required for protection in mice immunized with malaria sporozoites. Proc Natl Acad Sci U S A 85:573–576

    PubMed  CAS  Google Scholar 

  108. Weiss WR, Sedegah M, Berzofsky JA, et al. (1993) The role of CD4+ T cells in immunity to malaria sporozoites. J Immunol 151:2690–2698

    PubMed  CAS  Google Scholar 

  109. Wherry EJ, Teichgraber V, Becker TC, et al. (2003) Lineage relationship and protective immunity of memory CD8 T cell subsets. Nat Immunol 4:225–234

    Article  PubMed  CAS  Google Scholar 

  110. White KL, Snyder HL, Krzych U (1996) MHC class I-dependent presentation of exoerythrocytic antigens to CD8+ T lymphocytes is required for protective immunity against Plasmodium berghei. J Immunol 156:3374–3381

    PubMed  CAS  Google Scholar 

  111. Wizel B, Houghten R, Church P, et al. (1995) HLA-A2-restricted cytotoxic T lymphocyte responses to multiple Plasmodium falciparum sporozoite surface protein 2 epitopes in sporozoite-immunized volunteers. J Immunol 155:766–775

    PubMed  CAS  Google Scholar 

  112. Zechini B, Cordier L, Ngonseu E, et al. (1999) Plasmodium berghei development in irradiated sporozoite-immunized C57BL6 mice. Parasitology 118 (Pt 4):335–338

    Article  PubMed  Google Scholar 

  113. Zhu J, Hollingdale MR (1991) Structure of Plasmodium falciparum liver stage antigen-1. Mol Biochem Parasitol 48:223–226

    Article  PubMed  CAS  Google Scholar 

  114. Zinkernagel RM, Bachmann MF, Kundig TM, et al. (1996) On immunological memory. Annu Rev Immunol 14:333–367

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Krzych, U., Schwenk, R.J. (2005). The Dissection of CD8 T Cells During Liver-Stage Infection. In: Langhorne, J. (eds) Immunology and Immunopathogenesis of Malaria. Current Topics in Microbiology and Immunology, vol 297. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-29967-X_1

Download citation

Publish with us

Policies and ethics