Skip to main content

P Systems for Biological Dynamics

  • Chapter
Applications of Membrane Computing

Part of the book series: Natural Computing Series ((NCS))

Abstract

P systems have clear structural analogies with the cell. However, certain difficulties arise when one attempts to represent a biomolecular process using these systems. This chapter suggests some ways to overcome such difficulties and to provide P systems with further functionalities aimed at increasing their versatility in the modeling of biomolecular processes. Concepts from state transition dynamics are taken to put P systems in a general analysis framework for dynamical discrete systems. An explicit notion of environment is proposed to provide P systems with a regulatory and constraining agent, as real biomolecular processes must deal with. The chapter focuses on a new rewriting strategy inspired by biochemistry, in which reactivities play a central role in driving the rules as happens during biochemical reactions. Tests on an algorithm implementing rewriting with reactivities, realized on a simulator called Psim, show the capability of this algorithm to express several processes with precision, particularly those presenting oscillatory phenomena. Finally, an analysis of the process of leukocyte recruitment is also performed using Psim.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I.I. Ardelean, D. Besozzi: New Proposals for the Formalization of Membrane Proteins. In Proc. Second Brainstorming Week on Membrane Computing, Seville, Spain, February 2004 (Gh. Păun, A. Riscos-Núñez, A. Romero-Jiménez, F. Sancho-Caparrini, eds.), 53–59.

    Google Scholar 

  2. G. Bellin, G. Boudol: The Chemical Abstract Machine. Theoretical Computer Science, 96 (1992), 217–248.

    Article  MathSciNet  Google Scholar 

  3. F. Bernardini, M. Gheorghe: Cell Communication in Tissue P Systems and Cell Division in Population P Systems. In Proc. Second Brainstorming Week on Membrane Computing, Seville, Spain, February 2004 (Gh. Păun, A. Riscos-Núñez, A. Romero-Jiménez, F. Sancho-Caparrini, eds.), 74–91.

    Google Scholar 

  4. F. Bernardini, V. Manca: Dynamical Aspects of P Systems. BioSystems, 70 (2002), 85–93.

    Article  Google Scholar 

  5. F. Bernardini, V. Manca: P Systems with Boundary Rules. In Membrane Computing, International Workshop, WMC-CdeA 2002, Curtea de Argeş, Romania, August 2002, Revised Papers (Gh. Păun, G. Rozenberg, A. Salomaa, C. Zandron, eds.), LNCS 2597, Springer, Berlin, 2003, 107–118.

    Chapter  Google Scholar 

  6. D. Besozzi, I.I. Ardelean, G. Mauri: The Potential of P Systems for Modeling the Activity of Mechanosensitive Channels in E. Coli. In Pre-Proceedings of Workshop on Membrane Computing, WMC2003, Tarragona, GRLMC Report 28/03, 84–102.

    Google Scholar 

  7. C. Bonanno, V. Manca: Discrete Dynamics in Biological Models. Romanian Journal of Information Scicnce and Technology, 5,1–2 (2002), 45–67.

    Google Scholar 

  8. G. Ciobanu, D. Paraschiv: Membrane Software. A P System Simulator. Fundamenta Informaticae, 49,1–3 (2002),61–66.

    MATH  Google Scholar 

  9. R.L. Devaney: Introduction to Chaotic Dynamical Systems. Addison-Wesley, Reading, MA, 1989.

    MATH  Google Scholar 

  10. G. Franco, V. Manca: Modeling Some Biological Phenomena by P Systems. In Proc. of the 2nd Annual Meeting of CE MolCoNet Project, Wien, Austria, November 2003, 1–3.

    Google Scholar 

  11. G. Franco, V. Manca: A Membrane System for the Leukocyte Selective Recruitment. In Membrane Computing, International Workshop, WMC2003, Tarragona, Spain, July 2003, Revised Papers (C. Martín-Vide, Gh. Păun, G. Rozenberg, A. Salomaa, eds.), LNCS 2933, Springer, Berlin, 2004, 181–190.

    Google Scholar 

  12. R. Freund: Energy-Controlled P Systems. In Membrane Computing, International Workshop, WMC-CdeA 2002, Curtea de Argeş, Romania, August 2002, Revised Papers (Gh. Păun, G. Rozenberg, A. Salomaa, C. Zandron, eds.), LNCS 2597, Springer, Berlin, 2003, 247–260.

    Chapter  Google Scholar 

  13. T. Head: Formal Language Theory and DNA: An Analysis of the Generative Capacity of Specific Recombinant Behaviours. Bull. Mathematical Biology, 49 (1987), 737–759.

    MATH  MathSciNet  Google Scholar 

  14. R.C. Hilborn: Chaos and Nonlinear Dynamics. Oxford University Press, Oxford, UK, 2000.

    MATH  Google Scholar 

  15. D.S. Jones, B.D. Sleeman: Differential Equations and Mathematical Biology. Chapman & Hall/CRC, London, UK, 2003.

    MATH  Google Scholar 

  16. T. Kailath: Linear Systems. Prentice-Hall, Englewood Cliffs, 1980.

    MATH  Google Scholar 

  17. S.A. Kauffman: The Origins of Order. Oxford University Press, New York, NY, 1993.

    Google Scholar 

  18. J.D. Lambert: Computational Methods in Ordinary Differential Equations. J. Wiley & Sons, New York, NY, 1973.

    MATH  Google Scholar 

  19. C.G. Langton: Computation at the Edge of Chaos: Phase Transitions and Emergent Computation. Physica D, 42,12 (1990).

    Google Scholar 

  20. A. Lindenmayer: Mathematical Models for Cellular Interaction in Development. J. of Theoretical Biology, 18 (1968), 280–315.

    Article  Google Scholar 

  21. B.H. Mahan: University Chemistry. Addison Wesley, Reading, MA, 1967.

    Google Scholar 

  22. M. Malita: Membrane Computing in Prolog. In Pre-Proceedings of the Workshop on Multiset Processing, Curtea de Argeş, Romania, 2000, 159–175.

    Google Scholar 

  23. V. Manca, G. Franco, G. Scollo: String Transition Dynamics — Basic Concepts and Molecular Computing Perspectives. In Molecular Computational Models — Unconventional Approaches (M. Gheorghe, ed.), Idea Group, London, 2004, 32–55.

    Google Scholar 

  24. G. Nicolis, I. Prigogine: Exploring Complexity. An Introduction. Freeman and Company, San Francisco, CA, 1989.

    Google Scholar 

  25. A. Păun: On P Systems with Membrane Division. In Unconventional Models of Computation (I. Antoniou, C.S. Calude, M.J. Dinneen, eds.), Springer, London, UK, 2000, 187–201.

    Google Scholar 

  26. A. Păun, Gh. Păun: The Power of Communication: P Systems with Symport/Antiport. New Generation Computing, 20,3 (2002), 295–306.

    Article  MATH  Google Scholar 

  27. Gh. Păun: Computing with Membranes. J. Comput. System Sci., 61,1 (2000), 108–143.

    Article  MATH  MathSciNet  Google Scholar 

  28. Gh. Păun: Membrane Computing. An Introduction. Springer, Berlin, 2002.

    MATH  Google Scholar 

  29. Gh. Păun, G. Rozenberg: A Guide to Membrane Computing. Theoretical Computer Science, 287 (2002), 73–100.

    Article  MATH  MathSciNet  Google Scholar 

  30. Gh. Păun, G. Rozenberg, A. Salomaa: DNA Computing — New Computing Paradigms. Springer, Berlin, 1998.

    MATH  Google Scholar 

  31. Gh. Păun, Y. Suzuki, H. Tanaka: P Systems with Energy Accounting. Int. J. Computer Math., 78,3 (2001), 343–364.

    Article  MATH  Google Scholar 

  32. G. Rozenberg, A. Salomaa: Handbook of Formal Languages. Springer, Berlin, Germany, 1997.

    MATH  Google Scholar 

  33. K.S. Scott: Chemical Chaos. Oxford University Press, Oxford, UK, 1991.

    Google Scholar 

  34. L.A. Segel, I.R. Cohen: Design Principles for the Immune System and Other Distributed Autonomous System. Oxford University Press, Oxford, UK, 2001.

    Google Scholar 

  35. Y. Suzuki, H. Tanaka: Chemical Oscillation in Symbolic Chemical Systems and Its Behavioral Pattern. In Proc. International Conference on Complex Systems (Y. Bar-Yam, ed.), Nashua, NH, September 1997.

    Google Scholar 

  36. Y. Suzuki, H. Tanaka: On a Lisp Implementation of a Class of P Systems. Romanian Journal of Information Science and Technology, 3,2 (2000), 173–186.

    Google Scholar 

  37. Y. Suzuki, H. Tanaka: Abstract Rewriting Systems on Multisets and Their Application for Modeling Complex Behaviours. In Proc. of Brainstorming Week on Membrane Computing, Tarragona, Spain, February 2003, 313–331.

    Google Scholar 

  38. S. Wolfram: Theory and Application of Cellular Automata. Addison-Wesley, Reading, MA, 1986.

    Google Scholar 

  39. A. Wuensche: Basins of Attraction in Network Dynamics: A Conceptual Framework for Biomolecular Networks. In Modularity in Development and Evolution (G. Schlosser, G.P. Wagner, eds.), Chicago University Press, Chicago, MA, 2003.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bianco, L., Fontana, F., Franco, G., Manca, V. (2006). P Systems for Biological Dynamics. In: Ciobanu, G., Păun, G., Pérez-Jiménez, M.J. (eds) Applications of Membrane Computing. Natural Computing Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-29937-8_3

Download citation

  • DOI: https://doi.org/10.1007/3-540-29937-8_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25017-3

  • Online ISBN: 978-3-540-29937-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics