Skip to main content

Antimicrobial Peptides in the Airway

  • Chapter

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 306))

Abstract

The airway provides numerous defense mechanisms to prevent microbial colonization by the large numbers of bacteria and viruses present in ambient air. An important component of this defense is the antimicrobial peptides and proteins present in the airway surface fluid (ASF), themucin-rich fluid covering the respiratory epithelium. These include larger proteins such as lysozyme and lactoferrin, as well as the cationic defensin and cathelicidin peptides. While some of these peptides, such as human β-defensin (hBD)-1, are present constitutively, others, including hBD2 and t-3 are inducible in response to bacterial recognition by Toll-like receptor-mediated pathways. These peptides can act as microbicides in the ASF, but also exhibit other activities, including potent chemotactic activity for cells of the innate and adaptive immune systems, suggesting they play a complex role in the host defense of the airway. Inhibition of antimicrobial peptide activity or gene expression can result in increased susceptibility to infections. This has been observed with cystic fibrosis (CF), where the CF phenotype leads to reduced antimicrobial capacity of peptides in the airway. Pathogenic virulence factors can inhibit defensin gene expression, as can environmental factors such as air pollution. Such an interference can result in infections by airway-specific pathogens including Bordetella bronchiseptica, Mycobacterium tuberculosis, and influenza virus. Research into the modulation of peptide gene expression in animal models, as well as the optimization of peptide-based therapeutics shows promise for the treatment and prevention of airway infectious diseases.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aarbiou J, Ertmann M, van Wetering S, van Noort P, Rook D, Rabe KF, Litvinov SV, van Krieken JH, de Boer WI, Hiemstra PS (2002) Human neutrophil defensins induce lung epithelial cell proliferation in vitro. J Leukoc Biol 72:167–174

    PubMed  CAS  Google Scholar 

  • Aaron L, Saadoun D, Calatroni I, Launay O, Memain N, Vincent V, Marchal G, Dupont B, Bouchaud O, Valeyre D, Lortholary O (2004) Tuberculosis in HIV-infected patients: a comprehensive review. Clin Microbiol Infect 10:388–398

    PubMed  CAS  Google Scholar 

  • Ackermann MR, Gallup JM, Zabner J, Evans RB, Brockus CW, Meyerholz DK, Grubor B, Brogden KA (2004) Differential expression of sheep beta-defensin-1 and-2 and interleukin 8 during acute Mannheimia haemolytica pneumonia. Microb Pathog 37:21–27

    PubMed  CAS  Google Scholar 

  • Agerberth B, Grunewald J, Castanos-Velez E, Olsson B, Jornvall H, Wigzell H, Eklund A, Gudmundsson GH (1999) Antibacterial components in bronchoalveolar lavage fluid from healthy individuals and sarcoidosis patients. Am J Respir Crit Care Med 160:283–290

    PubMed  CAS  Google Scholar 

  • Agerberth B, Charo J, Werr J, Olsson B, Idali F, Lindbom L, Kiessling R, Jornvall H, Wigzell H, Gudmundsson GH (2000) The human antimicrobial and chemotactic peptides LL-37 and alpha-defensins are expressed by specific lymphocyte and monocyte populations. Blood 96:3086–3093

    PubMed  CAS  Google Scholar 

  • Arnold RR, Cole MF, McGhee JR (1977) A bactericidal effect for human lactoferrin. Science 197:263–265

    PubMed  CAS  Google Scholar 

  • Arnold RR, Russell JE, Champion WJ, Brewer M, Gauthier JJ (1982) Bactericidal activity of human lactoferrin: differentiation from the stasis of iron deprivation. Infect Immun 35:792–799

    PubMed  CAS  Google Scholar 

  • Ashcroft GS, Lei K, Jin W, Longenecker G, Kulkarni AB, Greenwell-Wild T, Hale-Donze H, McGrady G, Song XY, Wahl SM (2000) Secretory leukocyte protease inhibitor mediates non-redundant functions necessary for normal wound healing. Nat Med 6:1147–1153

    PubMed  CAS  Google Scholar 

  • Ashitani J, Mukae H, Nakazato M, Ihi T, Mashimoto H, Kadota J, Kohno S, Matsukura S (1998a) Elevated concentrations of defensins in bronchoalveolar lavage fluid in diffuse panbronchiolitis. Eur Respir J 11:104–111

    PubMed  CAS  Google Scholar 

  • Ashitani J, Mukae H, Nakazato M, Taniguchi H, Ogawa K, Kohno S, Matsukura S (1998b) Elevated pleural fluid levels of defensins in patients with empyema. Chest 113:788–794

    PubMed  CAS  Google Scholar 

  • Ayabe T, Satchell DP, Wilson CL, Parks WC, Selsted ME, Ouellette AJ (2000) Secretion of microbicidal alpha-defensins by intestinal Paneth cells in response to bacteria. Nat Immunol 1:113–118

    PubMed  CAS  Google Scholar 

  • Baird RM, Brown H, Smith AW, Watson ML (1999) Burkholderia cepacia is resistant to the antimicrobial activity of airway epithelial cells. Immunopharmacology 44:267–272

    PubMed  CAS  Google Scholar 

  • Balashazy I, Farkas A, Szoke I, Hofmann W, Sturm R (2003) Simulation of deposition and clearance of inhaled particles in central human airways. Radiat Prot Dosimetry 105:129–132

    PubMed  CAS  Google Scholar 

  • Bals R, Goldman MJ, Wilson JM (1998a) Mouse beta-defensin 1 is a salt-sensitive antimicrobial peptide present in epithelia of the lung and urogenital tract. Infect Immun 66:1225–1232

    PubMed  CAS  Google Scholar 

  • Bals R, Wang X, Wu Z, Freeman T, Bafna V, Zasloff M, Wilson JM (1998b) Human beta-defensin 2 is a salt-sensitive peptide antibiotic expressed in human lung. J Clin Invest 102:874–880

    PubMed  CAS  Google Scholar 

  • Bals R, Wang X, Zasloff M, Wilson JM (1998c) The peptide antibiotic LL-37/hCAP-18 is expressed in epithelia of the human lung where it has broad antimicrobial activity at the airway surface. Proc Natl Acad Sci U S A 95:9541–9546

    PubMed  CAS  Google Scholar 

  • Bals R, Wang X, Meegalla RL, Wattler S, Weiner DJ, Nehls MC, Wilson JM (1999a) Mouse beta-defensin 3 is an inducible antimicrobial peptide expressed in the epithelia of multiple organs. Infect Immun 67:3542–3547

    PubMed  CAS  Google Scholar 

  • Bals R, Weiner DJ, Meegalla RL, Wilson JM (1999b) Transfer of a cathelicidin peptide antibiotic gene restores bacterial killing in a cystic fibrosis xenograft model. J Clin Invest 103:1113–1117

    PubMed  CAS  Google Scholar 

  • Bals R, Weiner DJ, Meegalla RL, Accurso F, Wilson JM (2001) Salt-independent abnormality of antimicrobial activity in cystic fibrosis airway surface fluid. Am J Respir Cell Mol Biol 25:21–25

    PubMed  CAS  Google Scholar 

  • Bastian A, Schafer H (2001)Human α-defensin 1 (HNP-1) inhibits adenoviral infection in vitro. Regul Pept 101:157–161

    PubMed  CAS  Google Scholar 

  • Becker MN, Diamond G, Verghese MW, Randell SH (2000) CD14-dependent lipopolysaccharide-induced beta-defensin-2 expression in human tracheobronchial epithelium. J Biol Chem 275:29731–29736

    PubMed  CAS  Google Scholar 

  • Becker S, Quay J, Koren HS, Haskill JS (1994) Constitutive and stimulated MCP-1, GRO alpha, beta, and gamma expression in human airway epithelium and bronchoalveolar macrophages. Am J Physiol 266:L278–L286

    PubMed  CAS  Google Scholar 

  • Bloch HM (1948) The relationship between phagocytic cells and human tubercle bacilli. Am Rev Tuberc 57:662–670

    Google Scholar 

  • Boniotto M, Antcheva N, Zelezetsky I, Tossi A, Palumbo V, Verga Falzacappa MV, Sgubin S, Braida L, Amoroso A, Crovella S (2003a) A study of host defence peptide beta-defensin 3 in primates. Biochem J 374:707–714

    PubMed  CAS  Google Scholar 

  • Boniotto M, Tossi A, DelPero M, Sgubin S, Antcheva N, Santon D, Masters J, Crovella S (2003b) Evolution of the beta defensin 2 gene in primates. Genes Immun4:251–257

    PubMed  CAS  Google Scholar 

  • Brightbill HD, Libraty DH, Krutzik SR, Yang RB, Belisle JT, Bleharski JR, Maitland M, Norgard MV, Plevy SE, Smale ST, Brennan PJ, Bloom BR, Godowski PJ, Modlin RL (1999) Host defense mechanisms triggered by microbial lipoproteins through toll-like receptors. Science 285:732–736

    PubMed  CAS  Google Scholar 

  • Brogan TD, Ryley HC, Neale L, Yassa J (1975) Soluble proteins of bronchopulmonary secretions from patients with cystic fibrosis, asthma, and bronchitis. Thorax 30:72–79

    PubMed  CAS  Google Scholar 

  • Cameron LA, Taha RA, Tsicopoulos A, Kurimoto M, Olivenstein R, Wallaert B, Minshall EM, Hamid QA (1999) Airway epithelium expresses interleukin-18. Eur Respir J 14:553–559

    PubMed  CAS  Google Scholar 

  • Canetti G (1955) The tubercle bacillus in the pulmonary lesion of man; histobacteriology and its bearing on the therapy of pulmonary tuberculosis. Springer Verlag, New York

    Google Scholar 

  • Casanova JL, Jouanguy E, Lamhamedi S, Blanche S, Fischer A (1995) Immunological conditions of children with BCG disseminated infection. Lancet 346:581

    PubMed  CAS  Google Scholar 

  • Caverly JM, Diamond G, Gallup JM, Brogden KA, Dixon RA, Ackermann MR (2003) Coordinated expression of tracheal antimicrobial peptide and inflammatory-response elements in the lungs of neonatal calves with acute bacterial pneumonia. Infect Immun 71:2950–2955

    PubMed  CAS  Google Scholar 

  • Cegielski JP, McMurray DN (2004) The relationship between malnutrition and tuberculosis: evidence from studies in humans and experimental animals. Int J Tuberc Lung Dis 8:286–298

    PubMed  CAS  Google Scholar 

  • Chen CI, Schaller-Bals S, Paul KP, Wahn U, Bals R (2004) Beta-defensins and LL-37 in bronchoalveolar lavage fluid of patients with cystic fibrosis. J Cyst Fibros 3:45–50

    PubMed  CAS  Google Scholar 

  • Cheng YS, Yazzie D, Gao J, Muggli D, Etter J, Rosenthal GJ (2003) Particle characteristics and lung deposition patterns in a human airway replica of a dry powder formulation of polylactic acid produced using supercritical fluid technology. J Aerosol Med 16:65–73

    PubMed  CAS  Google Scholar 

  • Chertov O, Michiel DF, Xu L, Wang JM, Tani K, Murphy WJ, Longo DL, Taub DD, Oppenheim JJ (1996) Identification of defensin-1, defensin-2, and CAP37/azurocidin as T-cell chemoattractant proteins released from interleukin-8-stimulated neutrophils. J Biol Chem 271:2935–2940

    PubMed  CAS  Google Scholar 

  • Cole AM, Dewan P, Ganz T (1999) Innate antimicrobial activity of nasal secretions. Infect Immun 67:3267–3275

    PubMed  CAS  Google Scholar 

  • Cole AM, Hong T, Boo LM, Nguyen T, Zhao C, Bristol G, Zack JA, Waring AJ, Yang OO, Lehrer RI (2002) Retrocyclin: a primate peptide that protects cells from infection by T-and M-tropic strains of HIV-1. PNAS 99:1813–1818

    PubMed  CAS  Google Scholar 

  • Daher KA, Selsted ME, Lehrer RI (1986) Direct inactivation of viruses by human granulocyte defensins. J Virol 60:1068–1074

    PubMed  CAS  Google Scholar 

  • Davidson DJ, Currie AJ, Reid GS, Bowdish DM, MacDonald KL, Ma RC, Hancock RE, Speert DP (2004) The cationic antimicrobial peptide LL-37 modulates dendritic cell differentiation and dendritic cell-induced T cell polarization. J Immunol 172:1146–1156

    PubMed  CAS  Google Scholar 

  • Del Pero M, Boniotto M, Zuccon D, Cervella P, Spano A, Amoroso A, Crovella S (2002) Beta-defensin 1 gene variability among non-human primates. Immunogenetics 53:907–913

    PubMed  Google Scholar 

  • Diamond G, Zasloff M, Eck H, Brasseur M, Maloy WL, Bevins CL (1991) Tracheal antimicrobial peptide, a cysteine-rich peptide from mammalian tracheal mucosa: peptide isolation and cloning of a cDNA. Proc Natl Acad Sci U S A 88:3952–3956

    PubMed  CAS  Google Scholar 

  • Diamond G, Jones DE, Bevins CL (1993) Airway epithelial cells are the site of expression of a mammalian antimicrobial peptide gene. Proc Natl Acad Sci U S A 90:4596–4600

    PubMed  CAS  Google Scholar 

  • Diamond G, Kaiser V, Rhodes J, Russell JP, Bevins CL (2000a) Transcriptional regulation of beta-defensin gene expression in tracheal epithelial cells. Infect Immun 68:113–119

    PubMed  CAS  Google Scholar 

  • Diamond G, Legarda D, Ryan LK (2000b) The innate immune response of the respiratory epithelium. Immunol Rev 173:27–38

    PubMed  CAS  Google Scholar 

  • Drenick EJ, Alvarez LC (1971) Neutropenia in prolonged fasting. Am J Clin Nutr 24:859–863

    PubMed  CAS  Google Scholar 

  • Duits LA, Nibbering PH, van Strijen E, Vos JB, Mannesse-Lazeroms SP, van Sterkenburg MA, Hiemstra PS (2003) Rhinovirus increases human beta-defensin-2 and-3 mRNA expression in cultured bronchial epithelial cells. FEMS Immunol Med Microbiol 38:59–64

    PubMed  CAS  Google Scholar 

  • Ellison RT 3rd, Giehl TJ (1991) Killing of Gram-negative bacteria by lactoferrin and lysozyme. J Clin Invest 88:1080–1091

    PubMed  CAS  Google Scholar 

  • Engelhardt JF, Yankaskas JR, Wilson JM (1992) In vivo retroviral gene transfer into human bronchial epithelia of xenografts. J Clin Invest 90:2598–2607

    PubMed  CAS  Google Scholar 

  • Falla TJ, Zhang L (2004) Therapeutic potential and applications of innate immunity peptides. In: Devine DA, Hancock REW (eds) Mammalian host defense peptides. Cambridge University Press, Cambridge, pp 69–110

    Google Scholar 

  • Fennelly KP, Martyny JW, Fulton KE, Orme IM, Cave DM, Heifets LB (2004) Coughgenerated aerosols of Mycobacterium tuberculosis: a new method to study infectiousness. Am J Respir Crit Care Med 169:604–609

    PubMed  Google Scholar 

  • Firmani MA, Riley LW (2002) Reactive nitrogen intermediates have a bacteriostatic effect on Mycobacterium tuberculosis in vitro. J Clin Microbiol 40:3162–3166

    PubMed  CAS  Google Scholar 

  • Fitzgerald-Bocarsly PA (2002) Natural interferon-α producing cells, the plasmacytoid dendritic cells. Biotechniques 33:S16–S29

    Google Scholar 

  • Fleming A (1922) On a remarkable bacteriolytic element found in tissues and secretions. Proc R Soc Lond B Biol Sci 93: 306–317

    Google Scholar 

  • Fonteneau J-F, Gilliet M, Larsson M, Dasilva I, Münz C, Liu Y-J, Bhardwaj N (2003) Activation of influenza virus-specific CD4+ and CD8+ T cells: a new role for plasmacytoid dendritic cells in adaptive immunity. Blood 101: 3520–3526

    PubMed  CAS  Google Scholar 

  • Frye M, Bargon J, Dauletbaev N, Weber A, Wagner TO, Gropp R (2000) Expression of human alpha-defensin 5 (HD5) mRNA in nasal and bronchial epithelial cells. J Clin Pathol 53:770–773

    PubMed  CAS  Google Scholar 

  • Ganz T, Selsted ME, Szklarek D, Harwig SS, Daher K, Bainton DF, Lehrer RI (1985) Defensins. Natural peptide antibiotics of human neutrophils. J Clin Invest 76:1427–1435

    PubMed  CAS  Google Scholar 

  • Garcia JR, Jaumann F, Schulz S, Krause A, Rodriguez-Jimenez J, Forssmann U, Adermann K, Kluver E, Vogelmeier C, Becker D, Hedrich R, Forssmann WG, Bals R (2001a) Identification of a novel, multifunctional beta-defensin (human beta-defensin 3) with specific antimicrobial activity. Its interaction with plasma membranes of Xenopus oocytes and the induction of macrophage chemoattraction. Cell Tissue Res 306:257–264

    PubMed  CAS  Google Scholar 

  • Garcia JR, Krause A, Schulz S, Rodriguez-Jimenez FJ, Kluver E, Adermann K, Forssmann U, Frimpong-Boateng A, Bals R, Forssmann WG (2001b) Human beta-defensin 4: a novel inducible peptide with a specific salt-sensitive spectrum of antimicrobial activity. FASEB J 15:1819–1821

    PubMed  CAS  Google Scholar 

  • Goldman MJ, Anderson GM, Stolzenberg ED, Kari UP, Zasloff M, Wilson JM (1997) Human beta-defensin-1 is a salt-sensitive antibiotic in lung that is inactivated in cystic fibrosis. Cell 88:553–560

    PubMed  CAS  Google Scholar 

  • Gonzalez B, Moreno S, Burdach R, Valenzuela MT, Henriquez A, Ramos MI, Sorensen RU (1989) Clinical presentation of Bacillus Calmette-Guerin infections in patients with immunodeficiency syndromes. Pediatr Infect Dis J 8:201–206

    PubMed  CAS  Google Scholar 

  • Gotch FM, Spry CJ, Mowat AG, Beeson PB, Maclennan IC (1975) Reversible granulocyte killing defect in anorexia nervosa. Clin Exp Immunol 21:244–249

    PubMed  CAS  Google Scholar 

  • Griffin S, Taggart CC, Greene CM, O’Neill S, McElvaney NG (2003) Neutrophil elastase up-regulates human beta-defensin-2 expression in human bronchial epithelial cells. FEBS Lett 546:233–236

    PubMed  CAS  Google Scholar 

  • Gropp R, Frye M, Wagner TOF, Bargon J (1999) Epithelial defensins impair adenoviral infection: implication for adenovirus-mediated gene therapy. Human Gene Ther 10:957–964

    CAS  Google Scholar 

  • Grubor B, Gallup JM, Meyerholz DK, Crouch EC, Evans RB, Brogden KA, Lehmkuhl HD, Ackermann MR (2004) Enhanced surfactant protein and defensin mRNA levels and reduced viral replication during parainfluenza virus type 3 pneumonia in neonatal lambs. Clin Diag Lab Immunol 11:599–607

    CAS  Google Scholar 

  • Gudmundsson GH, Agerberth B (1999) Neutrophil antibacterial peptides, multifunctional effector molecules in the mammalian immune system. J ImmunolMethods 232:45–54

    CAS  Google Scholar 

  • Gudmundsson GH, Agerberth B, Odeberg J, Bergman T, Olsson B, Salcedo R (1996) The human gene FALL39 and processing of the cathelin precursor to the antibacterial peptide LL-37 in granulocytes. Eur J Biochem 238:325–332

    PubMed  CAS  Google Scholar 

  • Harbitz O, Jenssen AO, Smidsrod O (1984) Lysozyme and lactoferrin in sputum from patients with chronic obstructive lung disease. Eur J Respir Dis 65:512–520

    PubMed  CAS  Google Scholar 

  • Harder J, Meyer-Hoffert U, Teran LM, Schwichtenberg L, Bartels J, Maune S, Schroder JM (2000) Mucoid Pseudomonas aeruginosa, TNF-alpha, and IL-1beta, but not IL-6, induce human beta-defensin-2 in respiratory epithelia. Am J Respir Cell Mol Biol 22:714–721

    PubMed  CAS  Google Scholar 

  • Harder J, Bartels J, Christophers E, Schroder JM (2001) Isolation and characterization of human beta-defensin-3, a novel human inducible peptide antibiotic. J Biol Chem 276:5707–5713

    PubMed  CAS  Google Scholar 

  • Hiemstra PS, Maassen RJ, Stolk J, Heinzel-Wieland R, Steffens GJ, Dijkman JH (1996) Antibacterial activity of antileukoprotease. Infect Immun 64:4520–4524

    PubMed  CAS  Google Scholar 

  • Hinds W (1982) Aerosol technology: properties, behavior, and measurement of airborne particles. JohnWiley & Sons, New York

    Google Scholar 

  • Hiratsuka T, Nakazato M, Date Y, Ashitani J, Minematsu T, Chino N, Matsukura S (1998) Identification of human beta-defensin-2 in respiratory tract and plasma and its increase in bacterial pneumonia. Biochem Biophys Res Commun 249:943–947

    PubMed  CAS  Google Scholar 

  • Hodsagi M, Uhereczky G, Kiraly L, Pinter E (1986) BCG dissemination in chronic granulomatous disease (CGD). Dev Biol Stand 58:339–346

    PubMed  Google Scholar 

  • Holt PG (2000) Antigen presentation in the lung. Am J Respir Crit Care Med 162:S151–S156

    PubMed  CAS  Google Scholar 

  • Howell MD, Jones JF, Kisich KO, Streib JE, Gallo RL, Leung DYM (2004) Selective killing of vaccinia virus by LL-37: implications for eczema vaccinatum. J Immunol 172:1763–1767

    PubMed  CAS  Google Scholar 

  • Huttner KM, Kozak CA, Bevins CL (1997) The mouse genome encodes a single homolog of the antimicrobial peptide human beta-defensin 1. FEBS Lett 413:45–49

    PubMed  CAS  Google Scholar 

  • Jacquot J, Tournier JM, Carmona TG, Puchelle E, Chazalette JP, Sadoul P (1983) [Proteins of bronchial secretions in mucoviscidosis. Role of infection]. Bull Eur Physiopathol Respir 19:453–458

    PubMed  CAS  Google Scholar 

  • Jia HP, Wowk SA, Schutte BC, Lee SK, Vivado A, Tack BF, Bevins CL, McCray PB Jr (2000) A novel murine beta-defensin expressed in tongue, esophagus, and trachea. J Biol Chem 275:33314–33320

    PubMed  CAS  Google Scholar 

  • Jia HP, Schutte BC, Schudy A, Linzmeier R, Guthmiller JM, Johnson GK, Tack BF, Mitros JP, Rosenthal A, Ganz T, McCray PB Jr (2001) Discovery of new human beta-defensins using a genomics-based approach. Gene 263:211–218

    PubMed  CAS  Google Scholar 

  • Jia HP, Kline JN, Penisten A, Apicella MA, Gioannini TL, Weiss J, McCray PB Jr (2004) Endotoxin responsiveness of human airway epithelia is limited by low expression of MD-2. Am J Physiol Lung Cell Mol Physiol 287:L428–L437

    PubMed  CAS  Google Scholar 

  • Jones BW, Heldwein KA, Means TK, Saukkonen JJ, Fenton MJ (2001a) Differential roles of Toll-like receptors in the elicitation of proinflammatory responses by macrophages. Ann Rheum Dis 60Suppl 3:iii6–iii12

    PubMed  CAS  Google Scholar 

  • Jones BW, Means TK, Heldwein KA, Keen MA, Hill PJ, Belisle JT, Fenton MJ (2001b) Different Toll-like receptor agonists induce distinct macrophage responses. J Leukoc Biol 69:1036–1044

    PubMed  CAS  Google Scholar 

  • Kaiser V, Diamond G (2000) Expression of mammalian defensin genes. J Leukoc Biol 68:779–784

    PubMed  CAS  Google Scholar 

  • Kao CY, Chen Y, Zhao YH, Wu R (2003) ORFeome-based search of airway epithelial cell-specific novel human [beta]-defensin genes. Am J Respir Cell Mol Biol 29:71–80

    PubMed  CAS  Google Scholar 

  • Kao CY, Chen Y, Thai P, Wachi S, Huang F, Kim C, Harper RW, Wu R (2004) IL-17 markedly up-regulates beta-defensin-2 expression in human airway epithelium via JAK and NF-kappaB signaling pathways. J Immunol 173:3482–3491

    PubMed  CAS  Google Scholar 

  • Kisich KO, Heifets L, Higgins M, Diamond G (2001) Antimycobacterial agent based on mRNA encoding human beta-defensin 2 enables primary macrophages to restrict growth of Mycobacterium tuberculosis. Infect Immun 69:2692–2699

    PubMed  CAS  Google Scholar 

  • Kisich KO, Higgins M, Diamond G, Heifets L (2002) Tumor necrosis factor alpha stimulates killing of Mycobacterium tuberculosis by human neutrophils. Infect Immun 70:4591–4599

    PubMed  CAS  Google Scholar 

  • Knowles MR, Robinson JM, Wood RE, Pue CA, Mentz WM, Wager GC, Gatzy JT, Boucher RC (1997) Ion composition of airway surface liquid of patients with cystic fibrosis as compared with normal and disease-control subjects. J Clin Invest 100:2588–2595

    PubMed  CAS  Google Scholar 

  • Kouchi I, Yasuoka S, Ueda Y, Ogura T (1993) Analysis of secretory leukocyte protease inhibitor (SLPI) in bronchial secretions from patients with hypersecretory respiratory diseases. Tokushima J Exp Med 40:95–107

    PubMed  CAS  Google Scholar 

  • Kramps JA, Rudolphus A, Stolk J, Willems LN, Dijkman JH (1991) Role of antileukoprotease in the human lung. Ann N Y Acad Sci 624:97–108

    PubMed  CAS  Google Scholar 

  • Larrick JW, Hirata M, Zhong J, Wright SC (1995) Anti-microbial activity of human CAP18 peptides. Immunotechnology 1:65–72

    PubMed  CAS  Google Scholar 

  • Lee CH, Igarashi Y, Hohman RJ, Kaulbach H, White MV, Kaliner MA (1993) Distribution of secretory leukoprotease inhibitor in the human nasal airway. Am Rev Respir Dis 147:710–716

    PubMed  CAS  Google Scholar 

  • Legarda D, Klein-Patel ME, Yim S, Yuk MH, Diamond G (2005) Suppression of NF-kappaB-mediated beta-defensin gene expression in the mammalian airway by the Bordetella type III secretion system. Cell Microbiol 7:489–497

    PubMed  CAS  Google Scholar 

  • Lehrer RI, Daher K, Ganz T, Selsted M (1985) Direct inactivation of viruses by MCP-1 AND MCP-2, natural peptide antibiotics from rabbit leukocytes. J Virol 54:467–472

    PubMed  CAS  Google Scholar 

  • Lehrer RI, Ganz T (2002) Defensins of vertebrate animals. Curr Opin Immunol 14:96–102

    PubMed  CAS  Google Scholar 

  • Liu L, Zhao C, Heng HH, Ganz T (1997) The human beta-defensin-1 and alpha-defensins are encoded by adjacent genes: two peptide families with differing disulfide topology share a common ancestry. Genomics 43:316–320

    PubMed  CAS  Google Scholar 

  • Lu Z, Kim KA, Suico MA, Shuto T, Li JD, Kai H (2004) MEF up-regulates human beta-defensin 2 expression in epithelial cells. FEBS Lett 561:117–121

    PubMed  CAS  Google Scholar 

  • Marras TK, Daley CL (2002) Epidemiology of human pulmonary infection with nontuberculous mycobacteria. Clin Chest Med 23:553–567

    PubMed  Google Scholar 

  • Matsui H, Grubb BR, Tarran R, Randell SH, Gatzy JT, Davis CW, Boucher RC (1998) Evidence for periciliary liquid layer depletion, not abnormal ion composition, in the pathogenesis of cystic fibrosis airways disease. Cell 95:1005–1015

    PubMed  CAS  Google Scholar 

  • Matsushita I, Hasegawa K, Nakata K, Yasuda K, Tokunaga K, Keicho N (2002) Genetic variants of human beta-defensin-1 and chronic obstructive pulmonary disease. Biochem Biophys Res Commun 291:17–22

    PubMed  CAS  Google Scholar 

  • McCray PB Jr, Zabner J, Jia HP, Welsh MJ, Thorne PS (1999) Efficient killing of inhaled bacteria in DeltaF508 mice: role of airway surface liquid composition. AmJPhysiol 277:L183–L190

    CAS  Google Scholar 

  • Means TK, Jones BW, Schromm AB, Shurtleff BA, Smith JA, Keane J, Golenbock DT, Vogel SN, Fenton MJ (2001) Differential effects of a Toll-like receptor antagonist on Mycobacterium tuberculosis-induced macrophage responses. J Immunol 166:4074–4082

    PubMed  CAS  Google Scholar 

  • Meyerholz DK, Grubor B, Gallup JM, Lehmkuhl HD, Anderson RD, Lazic T, Ackermann MR (2004) Adenovirus-mediated gene therapy enhances parainfluenza virus 3 infection in neonatal lambs. J Clin Microbiol 42:4780–4787

    PubMed  CAS  Google Scholar 

  • Monick MM, Yarovinsky TO, Powers LS, Butler NS, Carter AB, Gudmundsson G, Hunninghake GW (2003)Respiratory syncytial virus up-regulates TLR4 and sensitizes airway epithelial cells to endotoxin. J Biol Chem 278:53035–53044

    PubMed  CAS  Google Scholar 

  • Morrison GM, Davidson DJ, Kilanowski FM, Borthwick DW, Crook K, Maxwell AI, Govan JR, Dorin JR (1998) Mouse beta defensin-1 is a functional homolog of human beta defensin-1. Mamm Genome 9:453–457

    PubMed  CAS  Google Scholar 

  • Morrison GM, Davidson DJ, Dorin JR (1999) A novel mouse beta defensin, Defb2, which is upregulated in the airways by lipopolysaccharide. FEBS Lett 442:112–116

    PubMed  CAS  Google Scholar 

  • Morrison G, Kilanowski F, Davidson D, Dorin J (2002) Characterization of the mouse beta defensin 1, Defb1, mutant mouse model. Infect Immun 70:3053–3060

    PubMed  CAS  Google Scholar 

  • Moser C, Weiner DJ, Lysenko E, Bals R, Weiser JN, Wilson JM (2002) Beta-defensin 1 contributes to pulmonary innate immunity in mice. Infect Immun 70:3068–3072

    PubMed  CAS  Google Scholar 

  • Nakashima H, Yamamoto N, Masuda M, Fujii N (1993) Defensins inhibit HIV replication in vitro. AIDS 7:1129

    PubMed  CAS  Google Scholar 

  • Niyonsaba F, Iwabuchi K, Matsuda H, Ogawa H, Nagaoka I (2002) Epithelial cell-derived human beta-defensin-2 acts as a chemotaxin for mast cells through a pertussis toxin-sensitive and phospholipase C-dependent pathway. Int Immunol 14:421–426

    PubMed  CAS  Google Scholar 

  • Palmberg L, Larsson BM, Malmberg P, Larsson K (1998) Induction of IL-8 production in human alveolar macrophages and human bronchial epithelial cells in vitro by swine dust. Thorax 53:260–264

    PubMed  CAS  Google Scholar 

  • Paone G, Wada A, Stevens LA, Matin A, Hirayama T, Levine RL, Moss J (2002) ADP ribosylation of human neutrophil peptide-1 regulates its biological properties. Proc Natl Acad Sci U S A 99:8231–8235

    PubMed  CAS  Google Scholar 

  • Patch JA, Barron AE (2002) Mimicry of bioactive peptides via non-natural, sequence-specific peptidomimetic oligomers. Curr Opin Chem Biol 6:872–877

    PubMed  CAS  Google Scholar 

  • Picard C, Fieschi C, Altare F, Al-Jumaah S, Al-Hajjar S, Feinberg J, Dupuis S, Soudais C, Al-Mohsen IZ, Genin E, Lammas D, Kumararatne DS, Leclerc T, Rafii A, Frayha H, Murugasu B, Wah LB, Sinniah R, Loubser M, Okamoto E, Al-Ghonaium A, Tufenkeji H, Abel L, Casanova JL (2002) Inherited interleukin-12 deficiency: IL12B genotype and clinical phenotype of 13 patients from six kindreds. Am J Hum Genet 70:336–348

    PubMed  CAS  Google Scholar 

  • Proud D, Sanders SP, Wiehler S (2004) Human rhinovirus infection induces airway epithelial cell production of human beta-defensin 2 both in vitro and in vivo. J Immunol 172:4637–4645

    PubMed  CAS  Google Scholar 

  • Quiñones-Mateu ME, Lederman MM, Feng Z, Chakraborty B, Weber J, Rangel HR, Marotta ML, Mirza M, Jiang B, Kiser P, Medvik K, Sieg SF, Weinberg A (2003) Human epithelial β-defensins 2 and 3 inhibit HIV-1 replication. AIDS 17:F39–F48

    PubMed  Google Scholar 

  • Raphael GD, Jeney EV, Baraniuk JN, Kim I, Meredith SD, Kaliner MA (1989) Pathophysiology of rhinitis. Lactoferrin and lysozyme in nasal secretions. J Clin Invest 84:1528–1535

    PubMed  CAS  Google Scholar 

  • Robinson WE Jr, McDougall B, Tran D, Selsted ME (1998) Anti-HIV-1 activity of indolicidin, an antimicrobial peptide from neutrophils. J Leukoc Biol 63:94–100

    PubMed  CAS  Google Scholar 

  • Russell JP, Diamond G, Tarver AP, Scanlin TF, Bevins CL (1996) Coordinate induction of two antibiotic genes in tracheal epithelial cells exposed to the inflammatory mediators lipopolysaccharide and tumor necrosis factor alpha. Infect Immun 64:1565–1568

    PubMed  CAS  Google Scholar 

  • Schaller-Bals S, Schulze A, Bals R (2002) Increased levels of antimicrobial peptides in tracheal aspirates of newborn infants during infection. Am J Respir Crit Care Med 165:992–995

    PubMed  Google Scholar 

  • Schnapp D, Harris A (1998) Antibacterial peptides in bronchoalveolar lavage fluid. Am J Respir Cell Mol Biol 19:352–356

    PubMed  CAS  Google Scholar 

  • Schonwetter BS, Stolzenberg ED, Zasloff MA (1995) Epithelial antibiotics induced at sites of inflammation. Science 267:1645–1648

    PubMed  CAS  Google Scholar 

  • Scott MG, Vreugdenhil AC, Buurman WA, Hancock RE, Gold MR (2000) Cutting edge: cationic antimicrobial peptides block the binding of lipopolysaccharide (LPS) to LPS binding protein. J Immunol 164:549–553

    PubMed  CAS  Google Scholar 

  • Scott MG, Davidson DJ, Gold MR, Bowdish D, Hancock RE (2002) The human antimicrobial peptide LL-37 is a multifunctional modulator of innate immune responses. J Immunol 169:3883–3891

    PubMed  CAS  Google Scholar 

  • Sha Q, Truong-Tran AQ, Plitt JR, Beck LA, Schleimer RP (2004) Activation of airway epithelial cells by toll-like receptor agonists. Am J Respir Cel lMol Biol 31:358–364

    Google Scholar 

  • Singh PK, Jia HP, Wiles K, Hesselberth J, Liu L, Conway BA, Greenberg EP, Valore EV, Welsh MJ, Ganz T, Tack BF, McCray PB Jr (1998) Production of beta-defensins by human airway epithelia. Proc Natl Acad Sci U S A 95:14961–14966

    PubMed  CAS  Google Scholar 

  • Singh PK, Tack BF, McCray PB Jr, Welsh MJ (2000) Synergistic and additive killing by antimicrobial factors found in human airway surface liquid. Am J Physiol Lung Cell Mol Physiol 279:L799–L805

    PubMed  CAS  Google Scholar 

  • Sinha S, Cheshenko N, Lehrer RI, Herold BC (2003) NP-1, a rabbit alpha-defensin, prevents the entry and intercellular spread of herpes simplex virus type 2. Antimicrob Agents Chemother 47:494–500

    PubMed  CAS  Google Scholar 

  • Smith JJ, Travis SM, Greenberg EP, Welsh MJ (1996) Cystic fibrosis airway epithelia fail to kill bacteria because of abnormal airway surface fluid. Cell 85:229–236

    PubMed  CAS  Google Scholar 

  • Soong LB, Ganz T, Ellison A, Caughey GH (1997) Purification and characterization of defensins from cystic fibrosis sputum. Inflamm Res 46:98–102

    PubMed  CAS  Google Scholar 

  • Sorensen O, Arnljots K, Cowland JB, Bainton DF, Borregaard N (1997) The human antibacterial cathelicidin, hCAP-18, is synthesized in myelocytes and metamyelocytes and localized to specific granules in neutrophils. Blood 90:2796–2803

    PubMed  CAS  Google Scholar 

  • Stolzenberg ED, Anderson GM, Ackermann MR, Whitlock RH, Zasloff M (1997) Epithelial antibiotic induced in states of disease. Proc Natl Acad. Sci U S A 94:8686–8690

    PubMed  CAS  Google Scholar 

  • Taggart CC, Greene CM, Smith SG, Levine RL, McCray PB Jr, O’Neill S, McElvaney NG (2003) Inactivation of human beta-defensins 2 and 3 by elastolytic cathepsins. J Immunol 171:931–937

    PubMed  CAS  Google Scholar 

  • Territo MC, Ganz T, Selsted ME, Lehrer R (1989) Monocyte-chemotactic activity of defensins from human neutrophils. J Clin Invest 84:2017–2020

    PubMed  CAS  Google Scholar 

  • Thoma-Uszynski S, Stenger S, Takeuchi O, Ochoa MT, Engele M, Sieling PA, Barnes PF, Rollinghoff M, Bolcskei PL, Wagner M, Akira S, Norgard MV, Belisle JT, Godowski PJ, Bloom BR, Modlin RL (2001) Induction of direct antimicrobial activity through mammalian toll-like receptors. Science 291:1544–1547

    PubMed  CAS  Google Scholar 

  • Thompson AB, Bohling T, Payvandi F, Rennard SI (1990) Lower respiratory tract lactoferrin and lysozyme arise primarily in the airways and are elevated in association with chronic bronchitis. J Lab Clin Med 115:148–158

    PubMed  CAS  Google Scholar 

  • Turner J, Cho Y, Dinh NN, Waring AJ, Lehrer RI (1998) Activities of LL-37, a cathelin-associated antimicrobial peptide of human neutrophils. Antimicrob Agents Chemother 42:2206–2214

    PubMed  CAS  Google Scholar 

  • Van Wetering S, van der Linden AC, van Sterkenburg MA, de Boer WI, Kuijpers AL, Schalkwijk J, Hiemstra PS (2000) Regulation of SLPI and elafin release from bronchial epithelial cells by neutrophil defensins. Am J Physiol Lung Cell Mol Physiol 278:L51–L58

    PubMed  Google Scholar 

  • Van Wetering S, Mannesse-Lazeroms SP, van Sterkenburg MA, Hiemstra PS (2002) Neutrophil defensins stimulate the release of cytokines by airway epithelial cells: modulation by dexamethasone. Inflamm Res 51:8–15

    PubMed  Google Scholar 

  • Ventura M, Boniotto M, Pazienza M, Palumbo V, Cardone MF, Rocchi M, Tossi A, Amoroso A, Crovella S (2004) Localization of beta-defensin genes in non human primates. Eur J Histochem 48:185–190

    PubMed  CAS  Google Scholar 

  • Virella-Lowell I, Poirer A, Chesnut KA, Brantly M, Flotte TR (2000) Inhibition of recombinant adeno-associated virus (rAAV) transduction by bronchial secretions from cystic fibrosis patients. Gene Therapy 7:1783–1789

    PubMed  CAS  Google Scholar 

  • Vogelmeier C, Hubbard RC, Fells GA, Schnebli HP, Thompson RC, Fritz H, Crystal RG (1991) Anti-neutrophil elastase defense of the normal human respiratory epithelial surface provided by the secretory leukoprotease inhibitor. J Clin Invest 87:482–488

    PubMed  CAS  Google Scholar 

  • Wang W, Owen SM, Rudolph DL, Cole AM, Hong T, Waring AJ, Lal RB, Lehrer RI (2004) Activity of alpha-and theta-defensins against primary isolates of HIV-1. J Immunol 173:515–520

    PubMed  CAS  Google Scholar 

  • Wang X, Moser C, Louboutin JP, Lysenko ES, Weiner DJ, Weiser JN, Wilson JM (2002) Toll-like receptor 4 mediates innateimmune responses to Haemophilus influenzae infection in mouse lung. J Immunol 168:810–815

    PubMed  CAS  Google Scholar 

  • Wang X, Zhang Z, Louboutin JP, Moser C, Weiner DJ, Wilson JM (2003) Airway epithelia regulate expression of human beta-defensin 2 through Toll-like receptor 2. FASEB J 17:1727–1729

    PubMed  CAS  Google Scholar 

  • Wickremasinghe MI, Thomas LH, Friedland JS (1999) Pulmonary epithelial cells are a source of IL-8 in the response to Mycobacterium tuberculosis: essential role of IL-1 from infected monocytes in a NF-kappa B-dependent network. J Immunol 163:3936–3947

    PubMed  CAS  Google Scholar 

  • Wilson CL, Ouellette AJ, Satchell DP, Ayabe T, Lopez-Boado YS, Stratman JL, Hultgren SJ, Matrisian LM, Parks WC (1999) Regulation of intestinal alpha-defensin activation by the metalloproteinase matrilysin in innate host defense. Science 286:113–117

    PubMed  CAS  Google Scholar 

  • Yamaguchi Y, Fukuhara S, Nagase T, Tomita T, Hitomi S, Kimura S, Kurihara H, Ouchi Y (2001) A novel mouse beta-defensin, mBD-6, predominantly expressed in skeletal muscle. J Biol Chem 276:31510–31514

    PubMed  CAS  Google Scholar 

  • Yang D, Chertov O, Bykovskaia SN, Chen Q, Buffo MJ, Shogan J, Anderson M, Schroder JM, Wang JM, Howard OM, Oppenheim JJ (1999) Beta-defensins: linking innate and adaptive immunity through dendritic and T cell CCR6. Science 286:525–528

    PubMed  CAS  Google Scholar 

  • Yang D, Chen Q, Chertov O, Oppenheim JJ (2000) Human neutrophil defensins selectively chemoattract naive T and immature dendritic cells. J Leukoc Biol 68:9–14

    PubMed  CAS  Google Scholar 

  • Yang YS, Mitta G, Chavanieu A, Calas B, Sanchez JF, Roch P, Aumelas A (2000) Solution structure and activity of the synthetic four-disulfide bond Mediterranean mussel defensin (MGD-1). Biochemistry 39:14436–11447

    PubMed  CAS  Google Scholar 

  • Yasin B, Wang W, Pang M, Cheshenko N, Hong T, Waring AJ, Herold BC, Wagar EA, Lehrer RI (2004) Theta defensins protect cells from infection by herpes simplex virus by inhibiting viral adhesion and entry. J Virol 78:5147–5156

    PubMed  CAS  Google Scholar 

  • Zaiou M, Nizet V, Gallo RL (2003) Antimicrobial and protease inhibitory functions of the human cathelicidin (hCAP18/LL-37) prosequence. J Invest Dermatol 120:810–816

    PubMed  CAS  Google Scholar 

  • Zanetti M, Gennaro R, Romeo D (1995) Cathelicidins: a novel protein family with a common proregion and a variable C-terminal antimicrobial domain. FEBS Lett 374:1–5

    PubMed  CAS  Google Scholar 

  • Zhang D, Simmen RC, Michel FJ, Zhao G, Vale-Cruz D, Simmen FA (2002) Secretory leukocyte protease inhibitor mediates proliferation of human endometrial epithelial cells by positive and negative regulation of growth-associated genes. J Biol Chem 277:29999–30009

    PubMed  CAS  Google Scholar 

  • Zhao C, Wang I, Lehrer RI (1996) Widespread expression of beta-defensin hBD-1 in human secretory glands and epithelial cells. FEBS Lett 396:319–322

    PubMed  CAS  Google Scholar 

  • Zhu J, Nathan C, Jin W, Sim D, Ashcroft GS, Wahl SM, Lacomis L, Erdjument-Bromage H, Tempst P, Wright CD, Ding A (2002) Conversion of proepithelin to epithelins: roles of SLPI and elastase in host defense and wound repair. Cell 111:867–878

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Laube, D.M., Yim, S., Ryan, L.K., Kisich, K.O., Diamond, G. (2006). Antimicrobial Peptides in the Airway. In: Shafer, W.M. (eds) Antimicrobial Peptides and Human Disease. Current Topics in Microbiology and Immunology, vol 306. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-29916-5_6

Download citation

Publish with us

Policies and ethics