Skip to main content

Stochastische Dominanz

  • Chapter
Finanzmarktstatistik
  • 4332 Accesses

Zusammenfassung

Der Begriff der stochastischen Dominanz erster, zweiter und dritter Ordnung spielt in der Nutzen-, Risiko- und Entscheidungstheorie eine wichtige Rolle. Er findet sich deshalb in Bereichen wieder, in denen diese Theorien Anwendung finden, so auch im finanzwirtschaftlichen Bereich. Auch im Zusammenhang mit der Performance-Messung risikobehafteter Anlagen spielt die stochastische Dominanz eine Rolle. Wir führen nachfolgend die Begriffe der stochastischen Dominanz erster, zweiter und dritter Ordnung ein und zeigen anschließend, wie man Dominanzbeziehungen empirischer Verteilungen untersucht.

Wir verwenden die folgende Notation. Seien X und Y zwei Zufallsvariablen mit zugehörigen Verteilungsfunktionen F und G. Inhaltlich stellen X und Y die Renditen (oder Überschussrenditen) zweier verschiedener, risikobehafteter Anlagen (einzelner Aktien oder Portfolios) dar, die miteinander verglichen werden sollen. Die Verteilungsfunktionen F(x) und G(y) beschreiben die Renditeverteilungen der beiden risikobehafteten Anlagen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literaturhinweise

  • Whitmore, G. und Findlay, M. (1978), Stochastic Dominance: An Approach to Decision-Making Under Risk, Heath, Lexington.

    Google Scholar 

  • Levy, H. (1992), ‘Stochastic dominance and expected utility: Survey and analysis’, Management Science 38, 555–593.

    MATH  Google Scholar 

  • Levy, H. (1998), Stochastic Dominance: Investment Decision Making Under Uncertainty, Kluwer Academic Publishers, Boston.

    Google Scholar 

  • Elton, E. J. und Gruber, M. J. (1995), Modern Portfolio Theory and Investment Analysis, 5. edn, John Wiley & Sons, New York.

    Google Scholar 

  • Huang, C.-F. und Litzenberger, R. H. (1988), Foundations for Financial Economics, Prentice-Hall, London.

    MATH  Google Scholar 

  • Ingersoll, J. E. (1987), Theory of Financial Decision Making, Rowman & Littlefield, Savage.

    Google Scholar 

  • Kruschwitz, L. (1999), Finanzierung und Investition, 2. Aufl, Oldenbourg, München.

    Google Scholar 

  • Eisenführ, F. und Weber, M. (2003), Rationales Entscheiden, 4. Aufl., Springer, Berlin.

    Google Scholar 

  • Schneeweiß, H. (1967), Entscheidungskriterien bei Risiko, Ökonometrie und Unternehmensforschung VI, Springer, Berlin.

    Google Scholar 

  • Yitzhaki, S. (1982), ‘Stochastic dominance, mean-variance and gini’s mean difference’, American Economic Review 72, 178–185.

    Google Scholar 

  • Steiner, M., Meyer-Bullerdiek, F. und Spanderen, D. (1996), ‘Erfolgsmessung von Wertpapierportefeuilles mit Hilfe der Stochastischen Dominanz und des Mean-Gini-Ansatzes’, Die Betriebswirtschaft 56, 49–61.

    Google Scholar 

  • Schmid, F. und Trede, M. (2000), ‘Stochastic dominance in German asset returns: Empirical evidence from the 1990s’, Jahrbücher für Nationalökonomie und Statistik 220, 315–326.

    Google Scholar 

  • McFadden, D. L. (1989), Testing for stochastic dominance, in T. Fombay und T. K. Seo (eds), ‘Studies in Economics of Uncertainty’, Springer, New York, pp. 113–134.

    Google Scholar 

  • Klecan, L., McFadden, R. und McFadden, D. (1991), ‘A robust test for stochastic dominance’. Mimeographed.

    Google Scholar 

  • Davidson, R. und Duclos, J.-Y. (2000), ‘Statistical inference for stochastic dominance and for the measurement of poverty and inequality’, Econometrica 68, 1435–1464.

    MATH  MathSciNet  Google Scholar 

  • Xu, K., Fisher, G. und Willson, D. (1995), ‘New distribution free tests for stochastic dominance’. Working Paper 95-02, Department of Economcics, Dalhousie University.

    Google Scholar 

  • Schmid, F. und Trede, M. (1997), Nonparametric tests for second order stochastic dominance from paired observations: Theory and empirical application, in P. von der Lippe, N. Rehm, H. Strecker und R. Wiegert (Hrsg.), ‘Wirtschafts-und Sozialstatistik heute. Theorie und Praxis (Festschrift für Walter Krug)’, Verlag Wissenschaft & Praxis, Berlin, S. 31–46.

    Google Scholar 

  • Linton, O., Maasoumi, E. und Whang, Y.-J. (2005), ‘Consistent testing for stochastic dominance under general sampling schemes’, Review of Economic Studies. (Forthcoming).

    Google Scholar 

  • Kläver, H. (2005), ‘Testing stochastic dominance using circular block methods’. Working Paper, Graduiertenkolleg Risikomanagement, Universität zu Köln.

    Google Scholar 

  • Schmid, F. und Trede, M. (1998), ‘A Kolmogorov-type test for second-order stochastic dominance’, Statistics & Probability Letters 37, 183–193.

    MATH  MathSciNet  Google Scholar 

  • Aitchison, J. und Brown, J. (1976), The Lognormal Distribution with Special Reference to its Uses in Economics, Cambridge University Press, Cambridge.

    Google Scholar 

  • Akgiray, V., Booth, G. G. und Loistl, O. (1989), ‘Statistical models of german stock returns’, Journal of Economics 50, 17–33.

    Google Scholar 

  • Alexander, C. (2001), Market Models. A Guide to Financial Data Analysis, John Wiley & Sons, Chichester.

    Google Scholar 

  • Ancona-Navarette, M. A. und Tawn, J. A. (2000), ‘A comparison of methods for estimating the extremal index’, Extremes 3, 5–38.

    MathSciNet  Google Scholar 

  • Andersen, T. G., Chung, H. J. und Soerensen, B. E. (1999), ‘Efficient method of moments estimation of a stochastic volatility model: A monte carlo study’, Journal of Econometrics 91, 61–87.

    MATH  Google Scholar 

  • Bamberg, G. und Baur, F. (2002), Statistik, 12. Aufl., Oldenbourg, München.

    Google Scholar 

  • Bamberg, G. und Dorfleitner, G. (2001), ‘Is traditional capital market theory consistent with fat-tailed log returns?’, Zeitschrift für Betriebswirtschaft 72, 865–878.

    Google Scholar 

  • Barndorff-Nielsen, O. E. (1977), ‘Exponentially decreasing distributions for the logarithm of particle size’, Proceedings of the Royal Society London A 353, 401–419.

    Article  Google Scholar 

  • Barth, W. (1996), Fraktale, Long Memory und Aktienkurse, Reihe Quantitative Ökonomie, Josef Eul, Bergisch Gladbach.

    Google Scholar 

  • Baz, J. und Chacko, G. (2004), Financial Derivatives. Princing, Applications and Mathematics, Cambridge University Press, Cambridge.

    Google Scholar 

  • Bickel, P. J. und Doksum, K. A. (2000), Mathematical Statistics, 2. edn, Holden-Day, Oakland.

    Google Scholar 

  • Black, F. (1972), ‘Capital market equilibrium with restricted borrowing’, Journal of Business 45, 444–454.

    Google Scholar 

  • Bollerslev, T. (1986), ‘Generalized autoregressive conditional heteroscedasticity’, Journal of Econometrics 31, 307–327.

    MATH  MathSciNet  Google Scholar 

  • Brigo, D. und Mercurio, F. (2001), Interest Rate Models. Theory and Practice, Springer, New York.

    MATH  Google Scholar 

  • Brooks, C. (2002), Introductory Econometrics for Finance, Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  • Brown, R., Durbin, J. und Evans, J. (1975), ‘Techniques for testing the constancy of regression relationships over time’, Journal of the Royal Statistical Society B 37, 149–192.

    MATH  MathSciNet  Google Scholar 

  • Bühler, W., Uhrig-Homburg, M., Walter, U. und Weber, T. (1999), ‘An empirical comparison of forward-rate and spot-rate models for valuing interest-rate options’, Journal of Finance 54, 269–305.

    Google Scholar 

  • Campbell, J., Lo, A. und MacKinlay, A. (1997), The Econometrics of Financial Markets, Princeton University Press, Princeton.

    MATH  Google Scholar 

  • Capéraà, P., Fougères, A.-L. und Genest, C. (1997), ‘A nonparametric estimation procedure for bivariate extreme value copulas’, Biometrika 84, 567–577.

    MATH  MathSciNet  Google Scholar 

  • Carmona, R.A.(2003), Statistical Analysis of Financial Data in S-Plus, Springer Texts in Statistics, Springer, New York.

    Google Scholar 

  • Casella, G. und Berger, R. (2001), Statistical Inference, 2. edn, Duxbury Resource Center, Belmont.

    Google Scholar 

  • Cherubini, U., Luciano, E. und Vecchiato, W. (2004), Copula Methods in Finance, John Wiley & Sons, Chichester.

    MATH  Google Scholar 

  • Chib, S., Nardari, F. und Shephard, N. (2002), ‘Markov chain monte carlo methods for stochastic volatility models’, Journal of Econometrics 108, 281–316.

    MATH  MathSciNet  Google Scholar 

  • Coles, S., Heffernan, J. E. und Tawn, J. A. (1999), ‘Dependence measures for extreme value analysis’, Extremes 2, 339–365.

    MATH  Google Scholar 

  • Cont, R. (2000), ‘Empirical properties of asset returns: Stylized facts and statistical issues’, Quantitative Finance 1, 223–236.

    Google Scholar 

  • Cowles, A. und Jones, H. E. (1937), ‘Some a posteriori probabilities in stock market action’, Econometrica 5, 280–294.

    Google Scholar 

  • Cox, D. R. und Miller, H. (1965), The Theory of Stochastic Processes, Methuen, London.

    MATH  Google Scholar 

  • Dacorogna, M. M., Gençay, R., Müller, U. A., Olsen, R. B. und Pictet, O. V. (2001), An Introduction to High-Frequency Finance, Academic Press, San Diego.

    Google Scholar 

  • D’Agostino, R. und Stephens, M. (1986), Goodness-of-Fit Techniques, Marcel Dekker, New York.

    MATH  Google Scholar 

  • Davidson, R. und Duclos, J.-Y. (2000), ‘Statistical inference for stochastic dominance and for the measurement of poverty and inequality’, Econometrica 68, 1435–1464.

    MATH  MathSciNet  Google Scholar 

  • Davison, A. und Hinkley, D. (1997), Bootstrap Methods and their Application, Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  • Devroye, L. (1986), Non-Uniform Random Variate Generation, Springer, New York.

    MATH  Google Scholar 

  • Dickey, D. A. und Fuller, W. A. (1979), ‘Distribution of the estimators for autoregressive time series with a unit root’, Journal of the American Statistical Association 74, 427–431.

    MATH  MathSciNet  Google Scholar 

  • Diks, C. (2000), Nonlinear Time Series Analysis. Methods and Applications, Nonlinear Time Series and Chaos, Vol. 4, World Scientific Publishing, Singapore.

    Google Scholar 

  • Dunis, C. (ed.) (1996), Forecasting Financial Markets. Exchange Rates, Interest Rates and Asset Management, Series in Financial Economics and Quantitative Analysis, John Wiley & Sons, Chichester.

    Google Scholar 

  • Durbin, J. und Koopman, S. J. (2001), Time Series Analysis by State Space Methods, Oxford Statistical Science Series, Vol. 24, Oxford University Press, Oxford.

    MATH  Google Scholar 

  • Eberlein, E. und Keller, U. (1995), ‘Hyperbolic distributions in finance’, Bernoulli 1, 281–299.

    MATH  Google Scholar 

  • Eberlein, E., Keller, U. und Prause, K. (1998), ‘New insight into smile, mispricing, and value at risk: The hyperbolic model’, Journal of Business 71, 371–405.

    Google Scholar 

  • Eisenführ, F. und Weber, M. (2003), Rationales Entscheiden, 4. Aufl., Springer, Berlin.

    Google Scholar 

  • Elton, E. J. und Gruber, M. J. (1995), Modern Portfolio Theory and Investment Analysis, 5. edn, John Wiley & Sons, New York.

    Google Scholar 

  • Embrechts, P., Klüppelberg, C. und Mikosch, T. (1997), Modelling Extremal Events, Springer, Berlin.

    MATH  Google Scholar 

  • Embrechts, P., McNeil, A. J. und Straumann, D. (2002), Correlation and dependency in risk management: Properties and pitfalls, in M. A. H. Dempster (ed.), ‘Risk Management. Value at Risk and Beyond’, Cambridge University Press, Cambridge, pp. 173–223.

    Google Scholar 

  • Engle, R. F. (1982), ‘Autoregressive conditional heteroscedasticity with estimates of the variance of united kingdom inflation’, Econometrica 50, 987–1007.

    MATH  MathSciNet  Google Scholar 

  • Engle, R. F. (2004), ‘Risk and volatility: Econometric models and financial practice’, The American Economic Review 94, 405–420.

    Google Scholar 

  • Everitt, B. S. (1981), Finite Mixture Distribution, Monographs on Statistics and Applied Probability, Chapman & Hall, London.

    Google Scholar 

  • Fahrmeir, L., Hamerle, A. und Tutz, G. (Hrsg.) (1996), Multivariate statistische Verfahren, 2. Aufl., de Gruyter, Berlin.

    MATH  Google Scholar 

  • Fama, E. F. (1965), ‘The behavior of stock market prices.’, Journal of Business 38, 34–105.

    Google Scholar 

  • Fama, E. F. (1970), ‘Efficient capital markets: A review of theory and empirical work’, Journal of Finance 25, 393–417.

    Google Scholar 

  • Fang, K., Kotz, S. und Ng, K. (1990), Symmetric Multivariate and Related Distributions, Monographs on Statistics and Applied Probability, Vol. 36, Chapman & Hall, London.

    Google Scholar 

  • Fisz, M. (1988), Wahrscheinlichkeitsrechnung und Mathematische Statistik, 11. Aufl., Deutscher Verlag der Wissenschaften, Berlin.

    Google Scholar 

  • Flury, B. (1997), A First Course in Multivariate Statistics, Springer, New York.

    MATH  Google Scholar 

  • Fouque, J.-P., Papanicolaou, G. und Sircar, K. R. (2000), Derivatives in Financial Markets with Stochastic Volatility, Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  • Frahm, G. (2004), Generalized elliptical distributions: Theory and apllications. Dissertation, Universität zu Köln.

    Google Scholar 

  • Franke, G. und Hax, H. (1999), Finanzwirtschaft des Unternehmens und Kapitalmarkt, 4. Aufl., Springer, Berlin.

    Google Scholar 

  • Franke, J., Härdle, W. und Hafner, C. (2004), Einführung in die Statistik der Finanzmärkte, 2. Aufl., Springer, Berlin.

    MATH  Google Scholar 

  • Franses, P. H. (1998), Time Series Models for Business and Economic Forecasting, Cambridge University Press, Cambridge.

    Google Scholar 

  • Franses, P. H. und Dijk, D. v. (2000), Non-Linear Time Series Models in Empirical Finance, Cambridge University Press, Cambridge.

    Google Scholar 

  • Franses, P. H. und Paap, R. (2004), Periodic Time Series Models, Advanced Texts in Econometrics, Oxford University Press, Oxford.

    Google Scholar 

  • Gauß, C. F. (1809), Theoria motus corporum celestium, Pethes et Besser, Hamburg.

    Google Scholar 

  • Genest, C. und Rivest, L.-P. (1993), ‘Statistical inference procedures for bivariate archimedean copulas’, Journal of the American Statistical Association 88, 1034–1043.

    MATH  MathSciNet  Google Scholar 

  • Gijbels, I. und Mielniczuk, J. (1990), ‘Estimating the density of a copula function’, Communications in Statistics, Theory and Methods 19, 445–464.

    MATH  MathSciNet  Google Scholar 

  • Glosten, L. R., Jagannathan, R. und Runkle, D. E.(1993), ‘On the relation between the expected value and the volatility of the nominal excess returns on stock’, Journal of Finance 48, 1779–1801.

    Google Scholar 

  • Göppl, H., Herrmann, R. und Kirchner, T. (1996), Risk Book. German Stocks 1976–1995, Knapp, Frankfurt.

    Google Scholar 

  • Gourieroux, C. und Jasiak, J. (2001), Financial Econometrics: Problems, Models, and Methods, Princeton Series in Finance, Princeton University Press, Princeton.

    MATH  Google Scholar 

  • Granger, C. W. J. (2004), ‘Time series analysis, cointegration, and applications’, The American Economic Review 94, 421–425.

    Google Scholar 

  • Grimmett, G. und Stirzaker, D. (2001), Probability and Random Processes, 3. edn, Oxford University Press, Oxford.

    Google Scholar 

  • Hamerle, A. und Ulschmid, C. (1996), ‘Empirische Performance der zweistufigen CAPM-Tests’, Zeitschrift für Betriebswirtschaft 66, 305–326.

    Google Scholar 

  • Hamilton, J. D. (1994), Time Series Analysis, Princeton University Press, Princeton.

    MATH  Google Scholar 

  • Hannan, E. (1963), Time Series Analysis, Chapman & Hall, London.

    Google Scholar 

  • Hansen, P. R. und Lunde, A. (2001), ‘A forecast comparison of volatility models: Does anything beat a GARCH(1,1)?’, Working Paper No. 01-04, Department of Economics, Brown University.

    Google Scholar 

  • Härdle, W. (1991), Smoothing Techniques, With Implementations in S, Springer, New York.

    Google Scholar 

  • Härdle, W., Kleinow, T. und Stahl, G. (2002), Applied Quantitative Finance. Theory and Computational Tools, Springer, Berlin.

    MATH  Google Scholar 

  • Härdle, W., Müller, M., Sperlich, S. und Werwatz, A. (2004), Nonparametric and Semiparametric Models, Springer Series in Statistics, Springer, Berlin.

    MATH  Google Scholar 

  • Hartung, J. und Elpelt, B. (1984), Multivariate Statistik. Lehr-und Handbuch der angewandten Statistik, Oldenbourg, München.

    MATH  Google Scholar 

  • Hartung, J., Elpelt, B. und Klösener, K.-H. (2002), Statistik, 13. Aufl, Oldenbourg, München.

    Google Scholar 

  • Hausmann, W., Diener, K. und Käsler, J. (2002), Derivate, Arbitrage und Portfolio-Selection. Stochastische Finanzmarktmodelle und ihre Anwendungen, Vieweg Verlag, Braunschweig.

    MATH  Google Scholar 

  • Heffernan, J. E. (2000), ‘A directory of coefficients of tail dependence’, Extremes 3, 279–290.

    MATH  MathSciNet  Google Scholar 

  • Heiler, S. und Michels, P. (1994), Deskriptive und explorative Datenanalyse, Oldenbourg, München.

    Google Scholar 

  • Hill, B. (1975), ‘A simple general approach to inference about the tail of a distribution’, Annals of Statistics 3, 1163–1174.

    MATH  MathSciNet  Google Scholar 

  • Hogg, R. V. (1974), ‘Adaptive robust procedures: A partial review and some suggestions for future applications and theory’, Journal of the American Statistical Association 69, 909–927.

    MATH  MathSciNet  Google Scholar 

  • Houthakker, H. S. und Williamson, P. J. (1996), The Economics of Financial Markets, Oxford University Press, Oxford.

    Google Scholar 

  • Huang, C.-F. und Litzenberger, R. H. (1988), Foundations for Financial Economics, Prentice-Hall, London.

    MATH  Google Scholar 

  • Ingersoll, J. E. (1987), Theory of Financial Decision Making, Rowman & Littlefield, Savage.

    Google Scholar 

  • Jackson, M. und Staunton, M. (2001), Advanced Modelling in Finance Using Excel and VBA, John Wiley & Sons, Chichester.

    Google Scholar 

  • Jarque, C. und Bera, A. (1980), ‘Eficient tests for normality, homoskedasticity and serial independence of regression residuals’, Economics Letters 6, 255–259.

    MathSciNet  Google Scholar 

  • Jarrow, R. (1992), Finance Theory, 2. edn, Prentice-Hall, Englewood Cliffs.

    Google Scholar 

  • Jensen, M. C. (1968), ‘The performance of mutual funds in the period 1945–1964’, Journal of Finance 23, 389–416.

    Google Scholar 

  • Jobson, J. und Korkie, B. M. (1981), ‘Performance hypothesis testing with the sharpe and treynor measures’, Journal of Finance 36, 889–908.

    Google Scholar 

  • Jobson, J. und Korkie, B. M. (1988), ‘The trouble with performance measurement: Comment’, Journal of Portfolio Management 14, 74–76.

    Google Scholar 

  • Joe, H. (1997), Multivariate Models and Dependence Concepts, Chapman & Hall, London.

    MATH  Google Scholar 

  • Johnson, N., Kotz, S. und Balakrishnan, N. (1994), Continuous Univariate Distributions, Vol. 1, 2. edn, Wiley-Interscience, New York.

    MATH  Google Scholar 

  • Johnson, N., Kotz, S. und Balakrishnan, N. (1995), Continuous Univariate Distributions, Vol. 2, 2. edn, Wiley-Interscience, New York.

    MATH  Google Scholar 

  • Johnson, N., Kotz, S. und Balakrishnan, N. (1997), Discrete Multivariate Distributions, Wiley-Interscience, New York.

    MATH  Google Scholar 

  • Johnson, N., Kotz, S. und Kemp, A. (2004), Univariate Discrete Distributions, 3. edn, Wiley-Interscience, New York.

    Google Scholar 

  • Junker, M. (2003), Modelling, estimating and validating multidimensional distribution functions — with applications to risk management. Dissertation, Technische Universität Kaiserslautern.

    Google Scholar 

  • Kläver, H. (2005), ‘Testing stochastic dominance using circular block methods’. Working Paper, Graduiertenkolleg Risikomanagement, Universität zu Köln.

    Google Scholar 

  • Klecan, L., McFadden, R. und McFadden, D. (1991), ‘A robust test for stochastic dominance’. Mimeographed.

    Google Scholar 

  • Kon, S. J. (1984), ‘Models of stock return — a comparison’, Journal of Finance 39, 147–165.

    Google Scholar 

  • Kotz, S., Balakrishnan, N. und Johnson, N. (2000), Continuous Multivariate Distributions. Models and Applications, Vol. 1, Wiley-Interscience, New York.

    Google Scholar 

  • Krämer, W. und Runde, R. (1997), ‘Chaos and the compass rose’, Economics Letters 54, 113–118.

    MATH  MathSciNet  Google Scholar 

  • Kruschwitz, L. (1999), Finanzierung und Investition, 2. Aufl, Oldenbourg, München.

    Google Scholar 

  • Laspeyres, E. (1871), ‘Die Berechnung einer mittleren Warenpreissteigerung’, Jahrbücher für Nationalökonomie und Statistik 16, 296–314.

    Google Scholar 

  • Lau, A. H.-L., Lau, H.-S. und Wingender, J. R. (1990), ‘The distribution of stock returns. New evidence against the stable model’, Journal of Business and Economic Statistics 8, 217–223.

    Google Scholar 

  • Legendre, A. M. (1805), Nouvelles méthodes pour la détermination des orbites des cométes, Courcier, Paris.

    Google Scholar 

  • Levy, H. (1992), ‘Stochastic dominance and expected utility: Survey and analysis’, Management Science 38, 555–593.

    MATH  Google Scholar 

  • Levy, H. (1998), Stochastic Dominance: Investment Decision Making Under Uncertainty, Kluwer Academic Publishers, Boston.

    Google Scholar 

  • Lilliefors, H. W. (1967), ‘On the Kolmogorov-Smirnov test for normality with mean and variance unknown’, Journal of the American Statistical Association 62, 399–402.

    Google Scholar 

  • Lintner, J. (1965), ‘Security prices, risk and maximal gains from diversification’, Journal of Finance 20, 587–615.

    Google Scholar 

  • Linton, O., Maasoumi, E. und Whang, Y.-J. (2005), ‘Consistent testing for stochastic dominance under general sampling schemes’, Review of Economic Studies. (Forthcoming).

    Google Scholar 

  • Lo, A. W. und MacKinlay, C. (1999), A Non-Random Walk Down Wall Street, Princeton University Press, Princeton.

    Google Scholar 

  • Maddala, G. S. und Rao, C. R. (eds) (1996), Handbook of Statistics 14. Statistical Methods in Finance, North Holland, Amsterdam.

    Google Scholar 

  • Mandelbrot, B. (1963), ‘The variation of certain speculative prices’, Journal of Business 36, 394–419.

    Google Scholar 

  • Mari, D. D. und Kotz, S. (2001), Correlation and Dependence, World Scientific, Singapore.

    MATH  Google Scholar 

  • Matteis, R. d. (2001), Fitting copulas to data. PhD-Thesis, Institute of Mathematics, University of Zurich.

    Google Scholar 

  • McCulloch, J. H. (1986), ‘Simple consistent estimators of stable distribution parameters’, Communications in Statistics. Computation and Simulation 15, 1109–1136.

    MATH  MathSciNet  Google Scholar 

  • McDonald, J. B. (1996), Probability distributions for financial models, in G. S. Maddala und C. R. Rao (eds), ‘Handbook of Statistics 14. Statistical Methods in Finance’, Elsevier, Amsterdam, pp. 427–461.

    Google Scholar 

  • McFadden, D. L. (1989), Testing for stochastic dominance, in T. Fombay und T. K. Seo (eds), ‘Studies in Economics of Uncertainty’, Springer, New York, pp. 113–134.

    Google Scholar 

  • McLachlan, G. J. und Basford, K. E. (1988), Mixture Models: Inference and Applications to Clustering, Statistics, A Series of Textbooks and Monographs, Marcel Dekker, New York.

    MATH  Google Scholar 

  • McLachlan, G. und Peel, D. (2000), Finite Mixture Models, Wiley Series in Probability and Statistics, Wiley-Interscience, New York.

    MATH  Google Scholar 

  • Mendes, B. V. d. M. und Souza, R. M. d. (2004), ‘Measuring financial risks with copulas’, International Review of Financial Analysis 13, 27–45.

    Google Scholar 

  • Mills, T. (1993), The Econometric Modelling of Financial Time Series, Cambridge University Press, Cambridge.

    Google Scholar 

  • Mills, T. C. (1999), The Econometric Modelling of Financial Time Series, 2. edn, Cambridge University Press, Cambridge.

    Google Scholar 

  • Mittnik, S. und Rachev, S. (2001), Stable Paretian Models in Finance, Financial Economics and Quantitative Analysis Series, John Wiley & Sons, Hoboken.

    Google Scholar 

  • Modigliani, F. und Modigliani, L. (1997), ‘Risk-adjusted performance’, Journal of Portfolio Management 23, 45–54.

    Article  Google Scholar 

  • Morey, M. R. und Vinod, H. D. (2000), Confidence intervals and hypothesis testing for the sharpe and treynor performance measures: A bootstrap approach, in Y. Abu-Mostafa, B. LeBaron, A. W. Lo und A. Weigend (eds), ‘Computational Finance 1999’, MIT Press, Cambridge, pp. 25–39.

    Google Scholar 

  • Mosler, K. und Schmid, F. (2004), Wahrscheinlichkeitsrechnung und schließende Statistik, Springer, Berlin.

    MATH  Google Scholar 

  • Mosler, K. und Schmid, F. (2005), Beschreibende Statistik und Wirtschaftsstatistik, 2. Aufl, Springer, Berlin.

    MATH  Google Scholar 

  • Mossin, J. (1966), ‘Equilibrium in a capital asset market’, Econometrica 35, 768–783.

    Google Scholar 

  • Muirhead, R. (1982), Aspects of Multivariate Statistical Theory, John Wiley & Sons, New York.

    MATH  Google Scholar 

  • Nelsen, R. B. (1998), An Introduction to Copulas, Lecture Notes in Statistics, Springer, New York.

    Google Scholar 

  • Nelson, D. B. (1991), ‘Conditional heteroskedasticity in asset returns: A new approach’, Econometrica 59, 347–370.

    MATH  MathSciNet  Google Scholar 

  • Neveu, J. (1975), Discrete-Parameter Martingales, North-Holland Mathematical Library, Vol. 10, North-Holland Publishing Company, Amsterdam.

    Google Scholar 

  • Paasche, H. (1874), ‘Über die Preisentwicklung der letzten Jahre nach den Hamburger Börsennotierungen’, Jahrbuch für Nationalökonomie und Statistik 23, 168–178.

    Google Scholar 

  • Papoulis, A. (1991), Probability, Random Variables, and Stochastic Processes, 3. edn, McGraw-Hill, Singapore.

    Google Scholar 

  • Patil, G., Kotz, S. und Ord, J. K. (1975a), Statistical Distribution in Scientific Work,Vol. 1, D. Reidel, Dordrecht.

    Google Scholar 

  • Patil, G., Kotz, S. und Ord, J. K. (1975b), Statistical Distribution in Scientific Work,Vol. 2, D. Reidel, Dordrecht.

    Google Scholar 

  • Patil, G., Kotz, S. und Ord, J. K. (1975c), Statistical Distribution in Scientific Work,Vol. 3, D. Reidel, Dordrecht.

    Google Scholar 

  • Reiss, R. und Thomas, M. (1997), Statistical Analysis of Extreme Values, Birkhäuser, Basel.

    MATH  Google Scholar 

  • Rinne, H. und Specht, K. (2002), Zeitreihen. Statistische Modellierung, Schätzung und Prognose, Vahlen, München.

    Google Scholar 

  • Roll, R. (1977), ‘A critique of the asset pricing theory’s test: Part I’, Journal of Financial Economics 4, 129–176.

    Google Scholar 

  • Romano, J. P. und Siegel, A. F. (1986), Counterexamples in Probability and Statistics, Wadsworth & Brooks, Monterey.

    MATH  Google Scholar 

  • Ross, S. (1996), Stochastic Processes, 2. edn, John Wiley & Sons.

    Google Scholar 

  • Runde, R. (1997), ‘The asymptotic null distribution of the Box-Pierce Q-statistic for random variables with infinite variance: An application to German stock returns’, Journal of Econometrics 78, 205–216.

    MATH  MathSciNet  Google Scholar 

  • Ruppert, D. (2004), Statistics and Finance. An Introduction, Springer Texts in Statistics, Springer, New York.

    Google Scholar 

  • Rydberg, T. H. (2000), ‘Realistic statistical modelling of financial data’, International Statistical Review 68, 233–258.

    MATH  Google Scholar 

  • Sandmann, G. und Koopman, S. J. (1998), ‘Estimation of stochastic volatility models via monte carlo maximum likelihood’, Journal of Econometrics 87, 271–301.

    MATH  MathSciNet  Google Scholar 

  • Sauer, A. (1991), ‘Die Bereinigung von Aktienkursen: Ein kurzer Überblick über Konzept und praktische Umsetzung’, Institut für Entscheidungstheorie und Unternehmensforschung, Universität zu Karlsruhe.

    Google Scholar 

  • Schlittgen, R. und Streitberg, B. H. (2001), Zeitreihenanalyse, 9. Aufl., Oldenbourg, München.

    Google Scholar 

  • Schmid, F. und Stich, A. (1999), Distribution of german stock returns normal mixtures revisited, in W. Gaul und M. Schader (Hrsg.), ‘Mathematische Methoden der Wirtschaftswissenschaften (Festschrift für Otto Opitz)’, Physica, Heidelberg, S. 272–281.

    Google Scholar 

  • Schmid, F. und Trede, M. (1997), Nonparametric tests for second order stochastic dominance from paired observations: Theory and empirical application, in P. von der Lippe, N. Rehm, H. Strecker und R. Wiegert (Hrsg.), ‘Wirtschafts-und Sozialstatistik heute. Theorie und Praxis (Festschrift für Walter Krug)’, Verlag Wissenschaft & Praxis, Berlin, S. 31–46.

    Google Scholar 

  • Schmid, F. und Trede, M. (1998), ‘A Kolmogorov-type test for second-order stochastic dominance’, Statistics & Probability Letters 37, 183–193.

    MATH  MathSciNet  Google Scholar 

  • Schmid, F. und Trede, M. (2000), ‘Stochastic dominance in German asset returns: Empirical evidence from the 1990s’, Jahrbücher für Nationalökonomie und Statistik 220, 315–326.

    Google Scholar 

  • Schmidt, R. (2003), Dependencies of extreme events in finance. Dissertation, Universität zu Ulm.

    Google Scholar 

  • Schneeweiß, H. (1967), Entscheidungskriterien bei Risiko, Ökonometrie und Unternehmensforschung VI, Springer, Berlin.

    Google Scholar 

  • Scott, D. (1992), Multivariate Density Estimation: Theory, Practice, and Visualization, John Wiley & Sons, Chichester.

    MATH  Google Scholar 

  • Shapiro, S. S. und Wilk, M. B. (1965), ‘An analysis of variance test for normality (complete samples)’, Biometrika 52, 591–611.

    MATH  MathSciNet  Google Scholar 

  • Sharpe, W. (1964), ‘Capital asset prices: A theory of market equilibrium under conditions of risk’, Journal of Finance 19, 425–442.

    Google Scholar 

  • Sharpe, W. F. (1966), ‘Mutual fund performance’, Journal of Business 39, 119–138.

    Google Scholar 

  • Shiryaev, A. (1999), Essentials of Stochastic Finance. Facts, Models, Theory, Advanced Series on Statistical Science & Applied Probability, Vol. 3, World Scientific Publishing, Singapore.

    Google Scholar 

  • Silverman, B. W. (1986), Density Estimation for Statistics and Data Analysis, Monographs on Statistics and Applied Probability, Vol. 26, Chapman & Hall, London.

    Google Scholar 

  • Simonoff, J. (1996), Smoothing Methods in Statistics, Springer, New York.

    MATH  Google Scholar 

  • Sklar, A. (1959), ‘Fonctions de répartition à n dimensions er leurs marges’, Publ. Inst. Statist. Univ. Paris 8, 229–231.

    MathSciNet  Google Scholar 

  • Sklar, A. (1973), ‘Random variables, joint distributions, and copulas’, Kybernetica 9, 449–460.

    MATH  MathSciNet  Google Scholar 

  • Sklar, A. (1996), Random variables, distribution functions, and copulas — a personal look backward and forward, in L. Rüschendorf, B. Schweizer und M. D. Tayler (eds), ‘Distributions with Fixed Marginals and Related Topics’, Institute of Mathematical Statistics, Hayward, California, pp. 1–14.

    Google Scholar 

  • Spanos, A. (1986), Statistical Foundations of Econometric Modelling, Cambridge University Press, Cambridge.

    Google Scholar 

  • Spremann, K. (2000), Portfoliomanagement, Oldenbourg, München.

    Google Scholar 

  • Steiner, M., Meyer-Bullerdiek, F. und Spanderen, D. (1996), ‘Erfolgsmessung von Wertpapierportefeuilles mit Hilfe der Stochastischen Dominanz und des Mean-Gini-Ansatzes’, Die Betriebswirtschaft 56, 49–61.

    Google Scholar 

  • Stier, W. (2001), Methoden der Zeitreihenanalyse, Springer, Berlin.

    Google Scholar 

  • Taylor, H. und Karlin, S. (1975), A First Course in Stochastic Processes, 2. edn, Academic Press, New York.

    MATH  Google Scholar 

  • Taylor, H. und Karlin, S. (1981), A Second Course in Stochastic Processes, Academic Press, New York.

    MATH  Google Scholar 

  • Taylor, S. (1986), Modelling Financial Time Series, John Wiley & Sons, Chichester.

    MATH  Google Scholar 

  • Titterington, D. M. (1986), Statistical Analysis of Finite Mixture Distributions, Wiley Series in Probability & Mathematical Statistics, John Wiley & Sons, Chichester.

    Google Scholar 

  • Treynor, J. L. (1965), ‘How to rate management of investment funds’, Harvard Business Review 43, 63–75.

    Google Scholar 

  • Treynor, J. L. und Black, F. (1973), ‘How to use security analysis to improve portfolio selection’, Journal of Business 46, 66–86.

    Google Scholar 

  • Tsay, R. S. (2002), Analysis of Financial Time Series, Wiley Series in Probability and Statistics, John Wiley & Sons, Chichester.

    MATH  Google Scholar 

  • Ulschmid, C. (1994), Empirische Validierung von Kapitalmarktmodellen, Europäischer Verlag der Wissenschaften, Frankfurt am Main.

    Google Scholar 

  • Warfsmann, J. (1993), Das Capital Asset Pricing Model in Deutschland, Deutscher Universitätsverlag, Wiesbaden.

    Google Scholar 

  • Watsham, T. J. und Parramore, K. (1997), Quantitative Methods in Finance, Thomson, London.

    Google Scholar 

  • Whitmore, G. und Findlay, M. (1978), Stochastic Dominance: An Approach to Decision-Making Under Risk, Heath, Lexington.

    Google Scholar 

  • Williams, D. (1991), Probability with Martingales, Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  • Xu, K., Fisher, G. und Willson, D. (1995), ‘New distribution free tests for stochastic dominance’. Working Paper 95-02, Department of Economcics, Dalhousie University.

    Google Scholar 

  • Yitzhaki, S. (1982), ‘Stochastic dominance, mean-variance and gini’s mean difference’, American Economic Review 72, 178–185.

    Google Scholar 

  • Zakoian, J.-M. (1994), ‘Threshold heteroskedastic models’, Journal of Economic Dynamics and Control 18, 931–955.

    Google Scholar 

  • Zivot, E. und Wang, J. (2003), Modelling Financial Time Series with S-Plus, Springer, New York.

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2006). Stochastische Dominanz. In: Finanzmarktstatistik. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-29795-2_8

Download citation

Publish with us

Policies and ethics