Skip to main content

The Role of SNARE Proteins in Trafficking and Function of Neurotransmitter Transporters

  • Chapter
Neurotransmitter Transporters

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 175))

Abstract

The SNARE hypothesis of vesicle fusion proposes that a series of protein-protein interactions governs the delivery of vesicles to various membrane targets such as the Golgi network and the plasma membrane. Key players in this process include members of the syntaxin family of membrane proteins. The first member identified in this family, syntaxin 1A, plays an essential role in the docking and fusion of neurotransmitter-containing vesicles to the presynaptic membrane of neurons. Syntaxin 1A and other syntaxin family members have also been shown to interact with, and directly regulate, a variety of ion channels. More recently, the family of plasma membrane neurotransmitter transporters, proteins that function in part to control transmitter levels in brain, have been shown to be direct targets of syntaxin 1A regulation. This regulation involves both the trafficking of transporters as well as the control of ion and transmitter flux through transporters. In this chapter, the functional effects of syntaxin-transporter interactions are reviewed, and how such interactions may regulate neuronal signaling are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arundine M, Tymianski M (2003) Molecular mechanisms of calcium-dependent neurodegeneration in excitotoxicity. Cell Calcium 34:325–337

    Article  PubMed  CAS  Google Scholar 

  • Barbaresi P, Gazzanelli G, Malatesta M (2001) γ-Aminobutyric acid transporters in the cat periaqueductal gray: a light and electron microscopic immunocytochemical study. J Comp Neurol 429:337–354

    Article  PubMed  CAS  Google Scholar 

  • Beckman ML, Bernstein EM, Quick MW (1998) Protein kinase C regulates the interaction between a GABA transporter and syntaxin 1A. J Neurosci 18:6103–6112

    PubMed  CAS  Google Scholar 

  • Bennett ER, Su H, Kanner BI (2000) Mutation of arginine 44 of GAT-1, a [Na(+)+Cl(−)]-coupled gamma-aminobutyric acid transporter from rat brain, impairs net flux but not exchange. J Biol Chem 275:34106–34113

    Article  PubMed  CAS  Google Scholar 

  • Bennett MK, Scheller RH (1993) The molecular machinery for secretion is conserved from yeast to neurons. Proc Natl Acad Sci U S A 90:2559–2563

    Article  PubMed  CAS  Google Scholar 

  • Bennett MK, Calakos N, Scheller RH (1992) Syntaxin: a synaptic protein implicated in docking of synaptic vesicles at presynaptic active zones. Science 257:255–259

    PubMed  CAS  Google Scholar 

  • Bezprozvanny I, Scheller RH, Tsien RW (1995) Functional impact of syntaxin on gating of N-type and Q-type calcium channels. Nature 378:363–366

    Article  Google Scholar 

  • Cao Y, Mager S, Lester HA (1997) H+ permeation and pH regulation at a mammalian serotonin transporter. J Neurosci 17:2257–2266

    PubMed  CAS  Google Scholar 

  • Chaudhry FA, Lehre KP, Campagne M, Ottersen OP, Danbolt NC, Storm-Mathisen J (1995) Glutamate transporters in glial plasma membranes: highly differentiated localizations revealed by quantitative ultrastructural immunocytochemistry. Neuron 15:711–720

    Article  PubMed  CAS  Google Scholar 

  • Cheatham B, Volchuk A, Kahn CR, Wang L, Rhodes CJ, Klip A (1996) Insulin-stimulated translocation of GLUT4 glucose transporters requires SNARE-complex proteins. Proc Natl Acad Sci U S A 93:15169–15173

    Article  PubMed  CAS  Google Scholar 

  • Chiu CS, Jensen K, Sokolova I, Wang D, Li M, Deshpande P, Davidson N, Mody I, Quick MW, Quake SR, Lester HA (2002) Number, density, and surface/cytoplasmic distribution of GABA transporters at presynaptic structures of knock-in mice carrying GABA transporter subtype1-green fluorescent protein fusions. J Neurosci 22:10251–10266

    PubMed  CAS  Google Scholar 

  • Corey JL, Davidson N, Lester HA, Brecha N, Quick MW (1994) Proteinkinase C modulates the activity of a cloned gamma-aminobutyric acid transporter expressed in Xenopus oocytes via regulated subcellular redistribution of the transporter. J Biol Chem 269:14759–14767

    PubMed  CAS  Google Scholar 

  • Deken SL, Beckman ML, Boos L, Quick MW (2000) Transport rates of GABA transporters: regulation by the N-terminal domain and syntaxin 1A. Nat Neurosci 3:998–1003

    Article  PubMed  CAS  Google Scholar 

  • Deken SL, Wang D, Quick MW (2003) Plasma membrane GABA transporters reside on distinct vesicles and undergo rapid regulated recycling. J Neurosci 23:1563–1568

    PubMed  CAS  Google Scholar 

  • Diamond JS, Jahr CE (1997) Transporters buffer synaptically released glutamate on a submillisecond time scale. J Neurosci 17:4672–4687

    PubMed  CAS  Google Scholar 

  • Dulubova I, Sugita S, Hill S, Hosaka M, Fernandez I, Sudhof TC, Rizo J (1999) A conformational switch in syntaxin during exocytosis: role of munc18. EMBO J 18:4372–4382

    Article  PubMed  CAS  Google Scholar 

  • Geerlings A, Lopez-Corcuera B, Aragon C (2000) Characterization of the interactions between the glycine transporters GLYT1 and GLYT2 and the SNARE protein syntaxin 1A. FEBS Lett 470:51–54

    Article  PubMed  CAS  Google Scholar 

  • Geerlings A, Nunez E, Lopez-Corcuera B, Aragon C (2001) Calcium-and syntaxin 1-mediated trafficking of the neuronal glycine transporter GLYT2. J Biol Chem 276:17584–17590

    Article  PubMed  CAS  Google Scholar 

  • Haase J, Killian AM, Magnani F, Williams C (2001) Regulation of the serotonin transporter by interacting proteins. Biochem Soc Trans 29:722–728

    Article  PubMed  CAS  Google Scholar 

  • Hansra N, Arya S, Quick MW (2004) Intracellular domains of a rat brain GABA transporter that govern transport. J Neurosci 24:4082–4087

    Article  PubMed  CAS  Google Scholar 

  • Hilgemann DW, Lu CC (1999) GAT1 (GABA:Na+:Cl−) cotransport function. Database reconstruction with an alternating access model. J Gen Physiol 114:459–475

    Article  PubMed  CAS  Google Scholar 

  • Horton N, Quick MW (2001) Syntaxin 1A up-regulates GABA transporter expression by subcellular redistribution. Mol Membr Biol 18:39–44

    PubMed  CAS  Google Scholar 

  • Ichinose T, Lukasiewicz PD (2002) GABA transporters regulate inhibition in the retina by limiting GABA(C) receptor activation. J Neurosci 22:3285–3292

    PubMed  CAS  Google Scholar 

  • Jahn R, Südhof TC (1999)Membrane fusion and exocytosis. Annu Rev Biochem 68:863–911

    Article  PubMed  CAS  Google Scholar 

  • Lee KH, Kim MY, Kim DH, Lee YS (2004) Syntaxin 1A and receptor for activated C kinase interact with the N-terminal region of human dopamine transporter. Neurochem Res 29:1405–1409

    Article  PubMed  CAS  Google Scholar 

  • Naren AP, Nelson DJ, Xie W, Jovov B, Pevsner J, Bennett MK, Benos DJ, Quick MW, Kirk KL (1997) Regulation of CFTR chloride channels by syntaxin and Munc18 isoforms. Nature 390:302–305

    Article  PubMed  CAS  Google Scholar 

  • Naren AP, Quick MW, Collawn JF, Nelson DJ, Kirk KL (1998) Syntaxin 1A inhibits CFTR chloride channels by means of domain-specific protein-protein interactions. Proc Natl Acad Sci U S A 95:10972–10977

    Article  PubMed  CAS  Google Scholar 

  • Naren AP, Cormet-Boyaka E, Fu J, Villain M, Blalock JE, Quick MW, Kirk KL (1999) CFTR chloride channel regulation by an interdomain interaction. Science 286:544–548

    Article  PubMed  CAS  Google Scholar 

  • Nutt DJ (2002) The neuropharmacology of serotonin and noradrenaline in depression. Int Clin Psychopharmacol 17:S1–S12

    PubMed  Google Scholar 

  • Ohno K, Koroll M, El Far O, Scholze P, Gomeza J, Betz H (2004) The neuronal glycine transporter 2 interacts with the PDZ domain protein syntenin-1. Mol Cell Neurosci 26:518–529

    Article  PubMed  CAS  Google Scholar 

  • Overstreet LS, Westbrook GL (2003) Synapse density regulates independence at unitary inhibitory synapses. J Neurosci 23:2618–2626

    PubMed  CAS  Google Scholar 

  • Quick MW (2002) Substrates regulate gamma-aminobutyric acid transporters in a syntaxin 1A-dependent manner. Proc Natl Acad Sci USA 99:5686–5691

    Article  PubMed  CAS  Google Scholar 

  • Quick MW (2003) Regulating the conducting states of a mammalian serotonin transporter. Neuron 40:537–549

    Article  PubMed  CAS  Google Scholar 

  • Quick MW, Corey JL, Davidson N, Lester HA (1997) Second messengers, trafficking-related proteins, and amino acid residues that contribute to the functional regulation of the rat brain GABA transporter GAT1. J Neurosci 17:2967–2979

    PubMed  CAS  Google Scholar 

  • Rothman JE (1994) Mechanisms of intracellular protein transport. Nature 372:55–63

    Article  PubMed  CAS  Google Scholar 

  • Rothman JE, Warren G (1994) Implications of the SNARE hypothesis for intracellular membrane topology and dynamics. Curr Biol 4:220–233

    Article  PubMed  CAS  Google Scholar 

  • Rudnick G (1998) Bioenergetics of neurotransmitter transport. J Bioenerg Biomembr 30:173–185

    Article  PubMed  CAS  Google Scholar 

  • Rudnick G, Clark J (1993) From synapse to vesicle: the reuptake and storage of biogenic amine neurotransmitters. Biochim Biophys Acta 1144:249–263

    Article  PubMed  CAS  Google Scholar 

  • Samuvel DJ, Jayanthi LD, Bhat NR, Ramamoorthy S (2005) A role for p38 mitogen-activated protein kinase in the regulation of the serotonin transporter: evidence for distinct cellular mechanisms involved in transporter surface expression. J Neurosci 25:29–41

    Article  PubMed  CAS  Google Scholar 

  • Schwartz EA (1987) Depolarization without calcium can release γ-aminobutyric acid from a retinal neuron. Science 238:350–355

    PubMed  CAS  Google Scholar 

  • Sheng Z, Rettig T, Takahashi M, Catterall WA (1994) Identification of a syntaxin-binding site on N-type calcium channels. Neuron 13:1303–1313

    Article  PubMed  CAS  Google Scholar 

  • Sollner T, Whiteheart SW, Brunner M, Erdjument-Bromage H, Geromanos S, Tempst P, Rothman JE (1993) SNAP receptors implicated in vesicle targeting and fusion. Nature 362:318–324

    Article  PubMed  CAS  Google Scholar 

  • Stanley EF (2003) Syntaxin I modulation of presynaptic calcium channel inactivation revealed by botulinum toxin C1. Eur J Neurosci 17:1303–1305

    Article  PubMed  Google Scholar 

  • Sung U, Apparsundaram S, Galli A, Kahlig KM, Savchenko V, Schroeter S, Quick MW, Blakely RD (2003) A regulated interaction of syntaxin 1A with the antidepressant-sensitive norepinephrine transporter establishes catecholamine clearance capacity. J Neurosci 23:1697–1709

    PubMed  CAS  Google Scholar 

  • Sutton RB, Fasshauer D, Jahn R, Brunger AT (1998) Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 A resolution. Nature 395:347–353

    CAS  Google Scholar 

  • Wang D, Deken SL, Whitworth TL, Quick MW (2003) Syntaxin 1A inhibits GABA flux, efflux, and exchange mediated by the rat brain GABA transporter GAT1. Mol Pharmacol 64:905–913

    Article  PubMed  CAS  Google Scholar 

  • Weimbs T, Low SH, Chapin SJ, Mostov KE, Bucher P, Hofmann K (1997) Aconserved domain is present in different families of vesicular fusion proteins: a new superfamily. Proc Natl Acad Sci U S A 94:3046–3051

    Article  PubMed  CAS  Google Scholar 

  • Zamponi GW (2003) Regulation of presynaptic calcium channels by synaptic proteins. J Pharmacol Sci 92:79–83

    Article  PubMed  CAS  Google Scholar 

  • Zhu Y, Fei J, Schwarz W (2005) Expression and transport function of the glutamate transporter EAAC1 in Xenopus oocytes is regulated by syntaxin 1A. JNeurosci Res 79:503–508

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Quick, M.W. (2006). The Role of SNARE Proteins in Trafficking and Function of Neurotransmitter Transporters. In: Sitte, H.H., Freissmuth, M. (eds) Neurotransmitter Transporters. Handbook of Experimental Pharmacology, vol 175. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-29784-7_9

Download citation

Publish with us

Policies and ethics